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Abstract. Existence of a solution to the 3D Navier-Stokes equation with

a smooth initial fluid velocity profile is proven assuming a scalar pressure

function and incompressible flow. Specifically, it is assumed that the absolute
value of the initial velocity profile and all of its spatial derivatives approach

zero as 1/(|x|+ a)κ as |x| → ∞, where κ is a constant such that 3/2 < κ ≤ 2,

and a is a positive constant. Also, it is taken as a given that the fluid is flowing
in free space under the forces of viscosity and scalar pressure gradients only,

and that there are no external driving forces.
First, we show that for any smooth velocity profile with the properties

described above, there exists a scalar pressure gradient with an absolute value

that also approaches zero as 1/(|x| + a)κ as |x| → ∞. This scalar pressure
arises from the incompressibility of the fluid, and maintains a zero-divergence

fluid velocity over time. We then show that any fluid velocity solution would

retain this spatial smoothness profile when propagated in time for as long as
the solution exists (ie. remains finite). Next, we show that such a solution

is bounded over all x ∈ R3 and t ≥ 0, thereby establishing existence and

smoothness. This is done by showing that the global maximum of |u| can
increase by no more than time integral of |∇p| which is shown to be finite over

all points x ∈ R3 and t ≥ 0. This control over the global maximum seems to

be one aspect of the Navier Stokes Millennium Problem that is not covered
very well in the current literature, and may be the key for solving it. Finally,

we show that the solution u(x, t) and p(x, t) is unique.

1. Introduction

The Navier-Stokes equation is one of several equations which governs fluid mo-
tion. Essentially, it is a statement of Newton’s Second Law (F = ma) applied to the
infinitesimal fluid elements, taking into account the pressure gradients and forces
due to viscosity. Proving existence and uniqueness of solutions to this equation
with various initial conditions and driving forces has been of great interest to the
mathematics community (Ref. 1, 2).

In studying the Navier-Stokes equation, many mathematicians have, over the
years, developed the concept of “weak” solutions to help gain insight into the be-
havior of the equation without the need of finding more “exact” solutions, which
may not be possible (Ref. 3). These weak solutions are obtained by relaxing some
requirements of the original equation such that solutions are more tractable and
easily described. In some cases, it may be possible to demonstrate the existence of
a “strong” (or smooth) solution by successive refinements of the weak solutions, or
even show that the weak solutions themselves are actually smooth.
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In 1934, the French mathematician Jean Leray defined an important class of
weak solutions to the Navier-Stokes equation. Instead of working with exact vec-
tors at each point x ∈ R3, the Leray solutions use vector averages over small neigh-
borhoods. Leray showed in his paper that such solutions always exist and never
blowup. This achievement opened a new approach to the Navier-Stokes problem.
Start with Leray solutions, which you know always exist, and see if you can use
them to obtain smooth solutions, which you want to prove always exist.

This and similar methods seem to be the general approach in recent decades
to resolving issues about the Navier-Stokes equation and its solutions, including
the Millennium Problem sponsored by the Clay Mathematics Institute. Papers
implementing these methods, however, are generally extremely difficult to follow,
and may be completely understandable only to the authors themselves. This, of
course, seriously impedes a proper review of their works since so few are capable
of doing so. Also, potential issues in using a particular class of weak solutions
may not arise until well after proposed proofs based on these weak solutions have
been posted or even published. For example, in October 2018, Tristan Buckmaster
and Vlad Vicol of Princeton University showed that under some circumstances,
uniqueness of the Leray solutions may break down for the Navier-Stokes equation
(Ref. 3, 4). Also, Terance Tao of UCLA constructed a smooth solution to the
averaged Navier-Stokes equation that blows up in finite time (Ref. 5).

In this paper, we prove existence and smoothness of solutions to the zero driving-
force Navier-Stokes equation for incompressible fluid flow, given a smooth initial
fluid velocity profile. We do not, however, follow the general approach of establish-
ing weak solutions, and then somehow showing how to obtain actual or smooth solu-
tions from them (Ref. 6-10). Instead, we establish a solution that is both bounded
and smooth by tracking the value of the global maximum point of K = u·u/2. This
seems to be a concept not considered in the current literature, and could be the
reason Dr. Terence Tao claims that the Navier-Stokes global regularity problem
is such an “ impossible problem” (Ref. 11). Also, the proof we present requires
only an undergraduate background in calculus, differential equations (ordinary and
partial), potential theory, and vector analysis for a reader to follow it.

2. Problem Description and Main Theorem

Written in vector form, the Navier-Stokes equation is given by

ρ

[
∂u

∂t
+ (u · ∇)u

]
= σ∇2u − ∇P + F(x, t) (2.1)

where u is the fluid velocity, ρ is the fluid density, P is pressure, σ is the viscosity
coefficient, and F is the external force per unit volume acting on the fluid elements.
In addition to satisfying equation (2.1), a solution u must also satisfy the equation
of continuity, or mass balance, which is given by

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.2)

This equation states that whatever net fluid mass (per unit time) flows into a fluid
element must appear as increased mass of the element, or equivalently, the mass
density at that point in the fluid space.
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In the problem we are considering, we assume an incompressible fluid, and there-
fore the density is constant. In this case, we can write equation (2.1) as

∂u

∂t
+ (u · ∇)u = ν∇2u − ∇p + f(x, t) (2.3)

where ν = σ/ρ is the normalized viscosity coefficient, p = (P − PA)/ρ is the
normalized pressure, PA is the ambient pressure (ie. the pressure at infinity), and
f = F/ρ is the force per unit mass acting on the fluid elements. Also we assume
that all external forces acting on the fluid are zero for t > 0. That is, we assume
that external forces may have acted on the fluid at times t < 0, thereby giving rise
to an initial fluid velocity profile u0(x) at t = 0 which we will assume is known.
Therefore, equation (2.3) becomes

∂u

∂t
= ν∇2u − (u · ∇)u − ∇p (2.4a)

or equivalently

∂ui
∂t

= ν∇2ui −
3∑
k=1

uk
∂ui
∂xk

− ∂p

∂xi
(2.4b)

for our current problem. The initial condition on u is given by

u(x, 0) = u0(x) or ui(x, 0) = u0i (x), i = 1, 2, 3 (2.5)

where u0(x) is a specified vector function of the spatial coordinates. Furthermore,
we will assume that u0(x) ∈ C∞ (ie. has continuous partial derivatives to all orders
with respect to each spatial variable). For a smooth, physically acceptable solution,
we must also assume there exist constants a, Cm, and κ such that∣∣∂mx u0i (x)

∣∣ ≤ max

∣∣∣∣∂m=m1+m2+m3u0i
∂xm1

1 ∂xm2
2 ∂xm3

3

∣∣∣∣ ≤ aκ C0
mi

(|x|+ a)κ
(2.6)

where m = m1 + m2 + m3, ∂mx denotes any mth order spatial derivative, and κ
can be any constant greater than 3/2. This condition ensures that the initial total
energy of fluid motion given by

E0 =

∫
R3

1

2

∣∣u0(x, t)
∣∣2 d3x (2.7)

is finite. To show this, we insert inequality (2.6) into (2.7) and obtain

E0 =

∫
R3

1

2

∣∣u0(x, t)
∣∣2 d3x ≤ 1

2
a2κC2

0

3∑
i=1

∫
R3

d3x

(|x|+ a)2κ

= 2πa2κC2
0

3∑
i=1

∫ ∞
0

r2

(r + a)2κ
dr = 6πa2κC2

0

∫ ∞
0

r2

(r + a)2κ
dr (2.8)

= 6πa2κC2
0

(
1

2κ− 3
− 1

κ− 1
+

1

2κ− 1

)
=

6πa2κC2
0

(2κ− 3)(κ− 1)(2κ− 1)

From this equation we see that κ must be greater than 3/2 for a finite E0. Also,
as will be shown later, the pressure gradient magnitude |∇p| approaches zero as
a2/(|x|+a)2 as |x| → ∞ for any such value of κ > 3/2. Inserting this result into the
Navier-Stokes equation, we then show that it implies the fluid velocity components
ui will not in general approach zero as |x| → ∞ any faster than a2/(|x|+ a)2, even
if the initial conditions are consistent with values of κ > 2. Therefore, the range of
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values of κ that would be compatible with a solution propagated in time is given
by 3/2 < κ ≤ 2. 1

Now let us consider the issue of ∇ · u and the pressure gradient ∇p. Since ρ is
constant, we see from equation (2.2) that we must have

∇ · u(x, t) =

3∑
k=1

∂uk
∂xk

(x, t) = 0 (2.9)

in order to satisfy the equation of continuity. Therefore u0(x) in equation (2.5)
must be a divergence-free vector function. Taking the divergence of both sides of
equation (2.4a), we have

∂

∂t
(∇ · u) + ∇ · [(u · ∇)u] = ν∇2(∇ · u) − ∇2p (2.10)

Inserting equation (2.9) into (2.10), we obtain

∇2p = −∇ · [(u · ∇)u] (2.11)

Carrying out the differentiations indicated on the right hand side of equation (2.11),
and using equation (2.9), we have

∇2p = −
3∑
j=1

3∑
k=1

(
∂uj
∂xk

)(
∂uk
∂xj

)
= −Q(x, t) (2.12)

(See Ref. 2, p. 35, Ref. 12 Ch. 2, Ref. 13) where we have defined

Q(x, t) =

3∑
j=1

3∑
k=1

(
∂uj
∂xk

(x, t)
∂uk
∂xj

(x, t)

)
(2.13)

Equation (2.12) governs the pressure needed in order to satisfy equation (2.9). If
the partial derivatives of the uj and uk on the right-hand side of equation (2.12)
are known functions of the spatial coordinates x, we can solve this equation as a
form1 of Poisson’s equation. From potential theory (Ref. 14, 15, 16), the solution
is

p(x, t) = −
∫ ∗
R3

G(x,x′)Q(x′, t) d3x′ =
1

4π

∫ ∗
R3

Q(x′, t)

|x− x′|
d3x′ (2.14)

where

G(x,x′) = − 1

4π

1

|x− x′|
is the Greens function associated with the Poisson equation and the boundary
condition that the solution approach zero as |x| approaches infinity. The “star”
integral over R3 is equation (2.14) is defined as the following improper integral∫ ∗

R3

f(x,x′, t) d3x′ = lim
ε→0

∫
R3−σ(ε,x)

f(x,x′, t) d3x′ (2.15)

1In many claims of having solved the Navier-Stokes Millennium Problem, the authors state
that the exponent κ > 0, consistent with the Official Problem Statement (Ref. 1). After this,

they proceed with a highly esoteric analysis that probably few others can follow. Even if the
reader is totally uninformed about their theory and methods, however, there is one aspect of
their arguments that is quite noticeable. That is, the exponent κ is used only in defining initial
conditions, and the actual analysis is completely independent of this exponent. Therefore, if their

proof is correct, then it seems it would be possible to use their methods to “prove” existence and
smoothness of infinite energy solutions which are not physically possible.
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where σ(ε,x) is defined as a small spherical volume with radius ε centered at the
point x. That is, σ(ε,x) is the set of all points x′ such that |x − x′| < ε. The
region of integration R3 − σ(ε,x) is then defined as R3 with the small spherical
region σ(ε,x) removed. The function f(x,x′, t) is assumed to be integrable over all
x′ ∈ R3 except possibly for a singularity at x′ = x. Henceforth in this article, all
integrals over R3 of a function with a singularity at x = x′ are defined as shown in
equation (2.15).

Taking the gradient of both sides of equation (2.14), we have

∇p(x, t) = − 1

4π

∫ ∗
R3

Q(x′, t)
(x− x′)

|x− x′|3
d3x′ (2.16)

Equations (2.14)-(2.16) are used in the next section to establish the existence and
spatial profiles of the scalar pressure p and its gradient ∇p, given the spatial profiles
of the fluid velocity u.

At this point, we summarize the problem description by stating our main theo-
rem.

If the Cauchy initial value problem for the incompressible Navier-Stokes equation
(with normalized viscosity constant ν > 0) is defined as

∂u

∂t
= ν∇2u − (u · ∇)u − ∇p where ∇ · u(x, t) = 0 (2.4a)(2.9)

with the initial conditions given by

u(x, 0) = u0(x) or ui(x, 0) = u0i (x), i = 1, 2, 3 (2.5)

where u0(x) ∈ C∞is a known divergence-free vector field in R3, and is spatially
smooth in the sense that there exists positive constants a, C0

mi, and κ such that

∣∣∂mx u0i (x)
∣∣ ≤ aκ C0

mi

(|x|+ a)κ
m = 0, 1, 2, 3, ... and

3

2
< κ ≤ 2 (2.6)

then a solution u(x, t), p(x, t) to this problem exists which is also smooth in the
sense of the above equation. That is, there exists functions Cmi(t) such that

|∂mx ui(x, t)| ≤
aκ Cmi(t)

(|x|+ a)κ
m = 0, 1, 2, 3, ...

These functions need not be continuous, but must be finite for all finite values of t.
Furthermore, the solution u(x, t), p(x, t) is unique.

Proving this theorem is the objective of this work.

3. Existence and Uniqueness of Solution

3.1 Existence and Spatial Dependence of Scalar Pressure Function. Be-
fore demonstrating a solution to the Navier-Stokes equation (2.4) with the given
initial condition and incompressibility constraint, we must first verify that the scalar
pressure function p does in fact exist and has the proper spatial dependence for fluid
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velocity fields u(x, t) that satisfy

|ui(x, t)| ≤
aκ

(|x|+ a)κ
Ai[0, 0, 0; 0](t) (3.1)∣∣∣∣ ∂ui∂xj

(x, t)

∣∣∣∣ ≤ aκ

(|x|+ a)κ
Ai[0, 0, 0; j](t) (3.2)

and in general∣∣∣∣ ∂m1+m2+m3 ui
∂xm1

1 ∂xm2
2 ∂xm3

3

(x, t)

∣∣∣∣ ≤ aκ

(|x) + a)κ
Ai[m1,m2,m3; 0](t) (3.3)∣∣∣∣ ∂∂xj

(
∂m1+m2+m3 ui
∂xm1

1 ∂xm2
2 ∂xm3

3

(x, t)

)∣∣∣∣ ≤ aκ

(|x) + a)κ
Ai[m1,m2,m3; j](t), (3.4)

at some particular time t, where the Ai[m1,m2,m3; j](t) functions may vary with
time but not the spatial coordinates. Note that the Cm coefficients from inequality
(2.6) can be used as initial values for the A[m1,m2,m3; j](t) functions in (3.1)-
(3.4). In this section, these inequalities are taken as a given, and we show that the
scalar pressure function p and its gradient ∇p exists for fluid velocity spatial profiles
satisfying these boundary conditions “at infinity”. In the following sections, we use
the initial conditions along with the results of this section to show that solutions
u(x, t) to the Navier-Stokes equation do in fact satisfy (3.1)-(3.4) for all values of
t for which u(x, t) remains defined.

We start by obtaining expressions, based on the Poisson integral, for p and its
spatial derivatives. Let us choose three non-negative integers m1, m2, and m3, and
differentiate equation (2.12) m1 times with respect to x1, m2 times with respect to
x2, and m3 times with respect to x3. The result is

∇2

(
∂m1+m2+m3 p

∂xm1
1 ∂xm2

2 ∂xm3
3

(x, t)

)
= − ∂m1+m2+m3 Q

∂xm1
1 ∂xm2

2 ∂xm3
3

(x, t) (3.5)

Then, using the same potential theory that was used in equation (2.14), we obtain

∂m1+m2+m3 p(x, t)

∂xm1
1 ∂xm2

2 ∂xm3
3

=
1

4π

∫
R3

1

|x− x′|
∂m1+m2+m3 Q(x′, t)

∂xm1
1 ∂xm2

2 ∂xm3
3

d3x′ (3.6)

We now differentiate equation (2.13) m1 times with respect to x1, m2 times with
respect to x2, and m3 times with respect to x3 to obtain

∂m1+m2+m3Q(x, t)

∂x1m1∂x2m2∂x3m3
=

3∑
j=0

3∑
k=0

m1∑
α=0

m2∑
β=0

m3∑
γ=0

(
m1

α

)(
m2

β

)(
m3

γ

)
(3.7)

× ∂m1+m2+m3−α−β−γ+1uj(x, t)

∂x1m1−α∂x2m2−β∂x3m3−γ∂xk

∂α+β+γ+1uk(x, t)

∂x1α∂x2β∂x3γ∂xj

where we have used the Leibnitz rule for determining higher derivatives of the prod-
uct of two functions. The quantities in parentheses to the right of the summation
signs are binomial coefficients. Since, by hypothesis, each of the derivatives on the
right-hand side of equation (3.7) approaches zero as 1/(|x| + a)κ as |x| increases,
this equation implies∣∣∣∣ ∂m1+m2+m3Q(x, t)

∂x1m1∂x2m2∂x3m3

∣∣∣∣ ≤ a2κ

(|x|+ a)2κ
B[m1,m2,m3](t) =

a2κ

(|x|+ a)2κ
B(t) (3.8)
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where

B(t) = B[m1,m2,m3](t) =

3∑
j=i

3∑
k=1

m1∑
α=0

m2∑
β=0

m3∑
γ=0

(
m1

α

)(
m2

β

)(
m3

γ

)
× Aj [m1 − α,m2 − β,m3 − γ, k](t)Ak[α, β, γ; j](t) (3.9)

and the A[m1,m2,m3; j](t) functions are defined in inequalities (3.3) and (3.4).
Taking the absolute value of both sides of equation (3.6) and using the triangle
inequality, we have∣∣∣∣ ∂m1+m2+m3 p(x, t)

∂m1x1∂m2x2∂m3x3

∣∣∣∣ ≤ 1

4π

∫
R3

1

|x− x′|

∣∣∣∣ ∂m1+m2+m3 Q

∂xm1
1 ∂xm2

2 ∂xm3
3

(x′, t)

∣∣∣∣ d3x′
≤ 1

4π

∫
R3

1

|x− x′|
a2κB(t)

(|x′|+ a)2κ
d3x′ (3.10)

Expressing the integral on the right-hand side of this inequality in spherical coor-
dinates, we write∣∣∣∣ ∂m1+m2+m3 p(x, t)

∂m1x1∂m2x2∂m3x3

∣∣∣∣ ≤ 1

4π
B(t)

∫ ∞
0

∫ π

0

∫ 2π

0

a2κ

(r′ + a)2κ

r′
2
sinθ′ dφ′dθ′dr′[

r2 + r′2 − 2rr′ cos θ′
]1/2

(3.11)
Performing the integration over φ and making the change of variable v′ = cos θ′

gives us∣∣∣∣ ∂m1+m2+m3 p(x, t)

∂m1x1∂m2x2∂m3x3

∣∣∣∣ ≤ 1

2
B(t)

∫ ∞
0

∫ 1

−1

a2κ

(r′ + a)2κ

r′
2[

r2 + r′2 − 2rr′v′
]1/2 dv′ dr′ (3.12)

We now carry out the integration over v′ to obtain

∣∣∣∣ ∂m1+m2+m3 p(x, t)

∂m1x1∂m2x2∂m3x3

∣∣∣∣ ≤ 1

2
B(t)

∫ ∞
0

a2κ

(r′ + a)2κ

[
r2 + r′

2 − 2rr′v′
]1/2

r′
2

−rr′ |1−1 dr
′

=
1

2
B(t)

∫ ∞
0

a2κ

(r′ + a)2κ

r + r′ − |r − r′|
r

r′ dr′ (3.13)

=
B(t)

r

∫ r

0

a2κ

(r′ + a)2κ
r′

2
dr′ + B(t)

∫ ∞
r

a2κ

(r′ + a)2κ

r′
2

r′
dr′

Since r′ > r in the second term on the right-hand side of this inequality, we have

|h| ≤ B(t)

r

∫ r

0

a2κ

(r′ + a)2κ
r′

2
dr′ +

B(t)

r

∫ ∞
r

a2κ

(r′ + a)2κ
r′

2
dr′

=
B(t)

r

∫ ∞
0

a2κ

(r′ + a)2κ
r′

2
dr′ =

a3 B(t)

(2κ− 3)(κ− 1)(2κ− 1) r
(3.14)

From this inequality, we see that p and its spatial derivatives approach zero at least
as fast as 1/r as r gets larger.

Let us now show that the spatial derivatives of ∇p must approach zero as 1/r2

as r →∞. Differentiating equation (3.4) with respect to xi (i = 1, 2, 3), we have

∂h

∂xi
=

∂

∂xi

(
∂m1+m2+m3 p

∂m1x1∂m2x2∂m3x3

)
=

∂m1+m2+m3

∂xm1
1 ∂xm2

2 ∂xm3
3

(
∂p

∂xi

)
= − 1

4π

∫
R3

xi − x′i
|x− x′|3

∂m1+m2+m3 Q

∂xm1
1 ∂xm2

2 ∂xm3
3

(x′, t) d3x′ (3.15)
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where we have defined the function h as

h(x, t) = h[m1,m2,m3](x, t) =
∂m1+m2+m3 p

∂xm1
1 ∂xm2

2 ∂xm3
3

(x, t) (3.16)

Thus far, we have not made any assumptions about the orientation of the coordinate
axises. Therefore, let us define our coordinate axises such that the point x is on the
positive x3 axis. In this case, the radial direction is along +x3, and we may write

x = r e3 = r er or equivalently x1 = 0, x2 = 0, x3 = r (3.17)-(3.19)

where e3 and er are unit vectors in the x3 and radial directions respectively. For
the primed coordinates, we have

x′1 = r′ sin θ′ cosφ′, x′2 = r′ sin θ′ sinφ′, x′3 = r′ cos θ′ (3.20)-(3.22)

Inserting equations (3.20)-(3.22) into (3.15) and setting i = 3, we obtain

∂h

∂x3
(x, t) = − 1

4π

∫ ∞
0

∫ π

0

∫ 2π

0

∂m1+m2+m3 Q

∂xm1
1 ∂xm2

2 ∂xm3
3

(r′ sin θ′ cosφ′, r′ sin θ′ sinφ′, r′ cos θ′, t)

× (r − r′ cos θ′) r′
2

sin θ′[
r2 + r′2 − 2rr′ cos θ′

]3/2 dφ′dθ′dr′ =
∂h

∂r
(3.23)

where we have used equations (3.20)-(3.22) to express the (Cartesian) components
of x′ in terms of the primed spherical coordinates. We will later show that this
radial component of ∇h is in fact the dominant component in the limit of large
values of |x|. Taking the absolute value of both sides of equation (3.23) and using
the triangle inequality gives us∣∣∣∣∂h∂r

∣∣∣∣ ≤ 1

4π

∫ ∞
0

∫ π

0

∫ 2π

0

∣∣∣∣ ∂m1+m2+m3 Q

∂xm1
1 ∂xm2

2 ∂xm3
3

(r′ sin θ′ cosφ′, r′ sin θ′ sinφ′, r′ cos θ′, t)

∣∣∣∣
×

∣∣∣∣∣ (r − r′ cos θ′) r′
2

sin θ′[
r2 + r′2 − 2rr′ cos θ′

]3/2
∣∣∣∣∣ dφ′dθ′dr′ (3.24)

Inserting inequality (3.8) into (3.24), we then have∣∣∣∣∂h∂r (x, t)

∣∣∣∣ ≤ 1

4π

∫ ∞
0

∫ π

0

∫ 2π

0

a2κB(t)

(r′ + a)2κ

|r − r′ cos θ′| r′2 sin θ′[
r2 + r′2 − 2rr′ cos θ′

]3/2 dφ′dθ′dr′ (3.25)

Performing the integration with respect to φ′ in this inequality, we obtain∣∣∣∣∂h∂r (x, t)

∣∣∣∣ ≤ 1

2
B(t)

∫ ∞
0

∫ π

0

a2κ

(r′ + a)2κ

|r − r′ cos θ′| r′2 sin θ′[
r2 + r′2 − rr′ cos θ′

]3/2 dθ′ dr′ (3.26)

If we define

L(r) =
1

2

∫ ∞
0

a2κ

(r′ + a)2κ
J(r, r′)dr′ (3.27)

where

J(r, r′) =

∫ π

0

|r − r′ cos θ′| r′2 sin θ′[
r2 + r′2 − 2rr′ cos θ′

]3/2 dθ′ (3.28)

Then we may write inequality (3.26) as∣∣∣∣∂h∂r (x, t)

∣∣∣∣ ≤ B(t)L(r) =
1

2
B(t)

∫ ∞
0

a2κ

(r′ + a)2κ
J(r, r′) dr′ (3.29)
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Let us now evaluate the integral in this equation. We first consider the case of
r′ < r. In this case equation (3.28) can be written as

J(r, r′) =

∫ 1

−1

r′2(r − r′v′)[
r2 + r′2 − 2rr′v′

]3/2 dv′ =
r′2

2r

∫ 1

−1

2r2 − 2rr′v′[
r2 + r′2 − 2rr′v′

]3/2 dv′ (3.30)

=
r′2

2r

[∫ 1

−1

r2 + r′2 − 2rr′v′[
r2 + r′2 − 2rr′v′

]3/2 dv′ + ∫ 1

−1

r2 − r′2[
r2 + r′2 − 2rr′v′

]3/2 dv′
]

=
r′2

2r

[∫ 1

−1

[
r2 + r′

2 − 2rr′v′
]−1/2

dv′ +

∫ 1

−1

r2 − r′2[
r2 + r′2 − 2rr′v′

]3/2 dv′
]

=
r′2

2r


−

[
r2 + r′2 − 2rr′v′

]1/2
rr′

 |1−1 +

(
r2 − r′2

rr′

[
r2 + r′

2 − 2rr′v′
]−1/2

)
|1−1


=
r′2

2r

[
2

(
r + r′ − (r − r′)

rr′

)]
= 2

r′2

r2

where we have made the change of variable v′ = cos θ′. For r < r′, the factor
r − r′ cos θ′, whose absolute value appears in equations (3.26)-(3.29), is less than
zero for values of v′ = cos θ′ > r/r′. Therefore, we must change the sign of the
integrand at v′ = r/r′ when evaluating J(r, r′). This function for r < r′ then
becomes

J(r, r′) =

∫ r/r′

−1

r′2(r − r′v′)[
r2 + r′2 − 2rr′v′

]3/2 dv′ − ∫ 1

r/r′

r′2(r − r′v′)[
r2 + r′2 − 2rr′v′

]3/2 dv′ (3.31)

=
r′2

2r


−

[
r2 + r′2 − 2rr′v′

]1/2
rr′

 |r/r′−1 +

(
r2 − r′2

rr′

[
r2 + r′

2 − 2rr′v′
]−1/2

)
|r/r

′

−1


−
r′2

2r

−

[
r2 + r′2 − 2rr′v′

]1/2
rr′

 |1r/r′ +

(
r2 − r′2

rr′

[
r2 + r′

2 − 2rr′v′
]−1/2

)
|1r/r′


= 2

r′2

r2

(
1−

√
1−

( r
r′

)2
)

Let us check continuity of this function near r = 0 by evaluating

lim
r→0

J(r, r′) = lim
r→0

2
r′

2

r2

(
1−

√
1−

( r
r′

)2
)

= lim
s→1

2
1− s
1− s2

= lim
s→1

2

1 + s
= 1 (3.32)

where we have made the change of variable

s =

√
1−

( r
r′

)2

Since J(r, r′) has a finite limit as r approaches zero for any value of r′ > r, this
function is continuous and therefore can be integrated with respect to r near r = 0.
From equations (3.30) and (3.31), we see that

J(r, r′) ≤ 2
r′

2

r2
(3.33)

if either r < r′ or r > r′. Inserting inequality (3.33) into equation (3.27) we obtain

L(r) ≤ 1

r2

∫ ∞
0

a2κr′2

(r′ + a)2κ
dr′ =

a2κ

(2κ− 3)(κ− 1)(2κ− 1) r2
(3.34)

which shows the 1/r2 asymptotic behavior of L(r) in the limit as r →∞. At first
sight of inequality (3.34), one might believe that it implies a singularity exists at
r = 0. This “singularity”, however, is merely an artifact of our gross over-estimation
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of J(r, r′) near r = 0. As we have already shown, J(r, r′) remains continuous and
integrable near r = 0. Inserting this result into inequality (3.29) then gives us∣∣∣∣∂h∂r (x, t)

∣∣∣∣ ≤ B(t)L(r) ≤ a2κ B(t)

(2κ− 3)(κ− 1)(2κ− 1) r2
=
a2κH(κ)B(t)

r2
(3.35)

where we have defined

H(κ) =
1

(2κ− 3)(κ− 1)(2κ− 1)

Thus, we see that |∂h/∂r| approaches zero as 1/r2 as r → ∞, and again the left-
hand side of this inequality remains bounded and continuous as r → 0.

From inequality (3.8), we see that the non-homogeneous term on the right-hand
side of equation (3.5) approaches zero as 1/r2κ as r increases. According to in-
equality (3.14), however, h approaches zero as 1/r as r → ∞. Therefore, the
non-homogeneous term in equation (3.5) can in general be made arbitrarily small
compared with the function h and its derivatives by choosing r sufficiently large.
This implies that h must approach a harmonic function (ie. solution of Laplace’s
equation ∇2h = 0) in the limit as r →∞. Let hL be the (harmonic) function that
describes the asymptotic behavior of h as r → ∞. That is hL is the function to
which h approaches as r increases. Since hL is a harmonic function that approaches
zero as r →∞, it can be written as

hL(r, θ, φ) =

∞∑
l=0

l∑
m=−l

Dlmr
−(l+1)Ylm(θ, φ) (3.36)

where the Dlm are constants and the Ylm are the spherical harmonics. Taking the
gradient of both sides of this equation, we have

∇hL =
∞∑
l=0

l∑
m=−l

Dlmr
−(l+2)

[
− (l + 1)Ylm(θ, φ) er +

∂Ylm

∂θ
(θ, φ) eθ +

1

sin θ

∂Ylm

∂φ
(θ, φ) eφ

]
(3.37)

Examining equations (3.36) and (3.37), we see that the dominate terms (at large
values of r) in hL and ∇hL are those with l = m = 0. Therefore, the asymptotic
behavior of h and ∇h can be expressed as

h→ D00√
4πr

and ∇h→ D00√
4πr2

er (3.38),(3.39)

in the limit as r → ∞, with a properly chosen constant D00.2 Also, note that equations
(3.38) and (3.39) are consistent with inequalities (3.13) and (3.35) respectively for large
values of r.

From equation (3.39), we see that in the limit as r = |x| → ∞, ∇h approaches a vector
function with only a radial component. This implies that there must be a value r1 such
that for r > r1, we have

|∇h · eθ| < |∇h · er|, and |∇h · eφ| < |∇h · er| (3.40),(3.41)

where eθ and eφ are unit vectors in the polar and azimuthal directions respectively.
Therefore ∇h · er, ∇h · eθ, and ∇h · eφ are the components of ∇h in the radial,
polar, and azimuthal directions respectively. The absolute value of ∇h is given by

|∇h| =
√

(∇h · er)2 + (∇h · eθ)2 + (∇h · eφ)2 (3.42)

2This result is analogous to the dominance of the monopole term in the far-field (ie. large

values of |x|) in an electrostatics problem (See Ref. 16, Ch. 4). In such a problem, h corresponds

to the electrostatic potential, ∇h corresponds to the electric field, and the right-hand side of
equation (3.4) corresponds to the charge density.
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Inserting (3.40) and (3.41) into (3.42), we have

|∇h| =
√

(∇h · er)2 + (∇h · er)2 + (∇h · er)2 (3.43)

≤
√

3 (∇h · er)2 =
√

3 |∇h · er| =
√

3

∣∣∣∣∂h∂r
∣∣∣∣

for r > r1. Let us define r0 = max[r1, a]. We then have from inequalities (3.35)
and (3.43)

|∇h| ≤
√

3

∣∣∣∣∂h∂r
∣∣∣∣ ≤ √3a2κH(κ)B(t)

r2
=

a2

(2r)2
4
√

3 a2(κ−1)H(κ)B(t) (3.44)

≤ a2

(r + a)2
4
√

3 a2(κ−1)H(κ)B(t)

for r > r0. If r < r0, we define |∇h|max(t) as the maximum of ∇h over the radial
interval 0 ≤ r ≤ r0 at time t. Then we may write

|∇h|(r + r0)2 ≤ 4r20|∇h|max(t) (3.45)

which implies

|∇h| ≤ 4r20|∇h|max(t)

(r + r0)2
≤ 4r20|∇h|max(t)

(r + a)2
=

a2

(r + a)2
4r20|∇h|max(t)

a2
(3.46)

for r < r0. Combining our results from inequalities (3.44) and (3.46), we have

|∇h| ≤ a2

(r + a)2
PG[m1,m2,m3](t) =

a2

(|x|+ a)2
PG[m1,m2,m3](t) (3.47)

where we have defined

PG[m1,m2,m3](t) = 4 max

[√
3 a2(κ−1)H(κ)B(t),

r2
0|∇h|max(t)

a2

]
(3.48)

and B(t) is given in equation(3.9). Since |∂h/∂xi| ≤ |∇h| for i = 1, 2, 3, inequality
(3.47) implies that∣∣∣∣∂m1+m2+m3+1p(x, t)

∂xm1
1 ∂xm2

2 ∂xm3
3 ∂xi

∣∣∣∣ ≤ ∣∣∣∣∇(∂m1+m2+m3p(x, t)

∂xm1
1 ∂xm2

2 ∂xm3
3

)∣∣∣∣ ≤ a2

(|x|+ a)2
PG[m1,m2,m3](t)

(3.49)
and since κ ≤ 2, we can write∣∣∣∣∂m1+m2+m3+1p(x, t)

∂xm1
1 ∂xm2

2 ∂xm3
3 ∂xi

∣∣∣∣ ≤ ∣∣∣∣∇(∂m1+m2+m3p(x, t)

∂xm1
1 ∂xm2

2 ∂xm3
3

)∣∣∣∣ ≤ aκ

(|x|+ a)κ
PG[m1,m2,m3](t)

(3.50)

Therefore, the components of ∇p and their spatial derivatives to all order satisfy
the required boundary conditions.

3.2 Smoothness of Existing Solution. Before establishing existence of a solu-
tion to the given problem, we need to show that any such solution must be smooth
as defined in our main theorem. Understand that the claims made in this section
apply only to pre-blowup times t. That is, if there exists a finite blowup time
Tb, then the results of this section apply only to the half-open interval given by
0 ≤ t < Tb. We start by differentiating the Navier-Stokes equation (2.4b) m1 times
with respect to x1, m2 times with respect to x2, and m3 times with respect to x3
to obtain
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∂

∂t

(
∂m1+m2+m3 ui(x, t)

∂x1
m1∂x2

m2∂x3
m3

)
= ν

3∑
k=1

∂m1+m2+m3+2 ui(x, t)

∂x1
m1∂x2

m2∂x3
m3∂xk2

−
∂m1+m2+m3+1p(x, t)

∂xm1
1 ∂xm2

2 ∂xm3
3 ∂xi

(3.51)

−
3∑
k=1

m1∑
α=0

m2∑
β=0

m3∑
γ=0

(
m1

α

)(
m2

β

)(
m3

γ

)
∂m1+m2+m3−α−β−γuk(x, t)

∂x1
m1−α ∂x2

m2−β ∂x3
m3−γ

∂α+β+γ+1ui(x, t)

∂x1
α ∂x2

β ∂x3
γ ∂xk

Next, we take the absolute value of both sides of this equation and use the triangle
inequality to obtain∣∣∣∣∂∂t

(
∂m1+m2+m3 ui(x, t)

∂x1
m1∂x2

m2∂x3
m3

)∣∣∣∣ ≤ ν

3∑
k=1

∣∣∣∣ ∂m1+m2+m3+2 ui(x, t)

∂x1
m1∂x2

m2∂x3
m3∂xk2

∣∣∣∣ +

∣∣∣∣∂m1+m2+m3+1p(x, t)

∂xm1
1 ∂xm2

2 ∂xm3
3 ∂xi

∣∣∣∣
(3.52)

+

3∑
k=1

m1∑
α=0

m2∑
β=0

m3∑
γ=0

(
m1

α

)(
m2

β

)(
m3

γ

) ∣∣∣∣ ∂m1+m2+m3−α−β−γuk(x, t)

∂x1
m1−α ∂x2

m2−β ∂x3
m3−γ

∣∣∣∣ ∣∣∣∣ ∂α+β+γ+1ui(x, t)

∂x1
α ∂x2

β ∂x3
γ ∂xk

∣∣∣∣
Inserting inequalities (3.1)-(3.4) and (3.50) into (3.52) then gives us∣∣∣∣∂∂t

(
∂m1+m2+m3 ui(x, t)

∂x1
m1∂x2

m2∂x3
m3

)∣∣∣∣ ≤ ν
aκ

(|x|+ a)κ
Li[m1,m2,m3](t) (3.53)

+
aκ

(|x|+ a)κ
PG[m1,m2,m3](t) +

a2κ

(|x|+ a)2κ
TTi[m1,m2,m3](t)

Where we have defined

Li[m1,m2,m3](t) = Ai[m1 + 2,m2,m3; 0](t) +Ai[m1,m2 + 2,m3; 0](t) (3.54)

+Ai[m1,m2,m3 + 2; 0](t)

and

TTi[m1,m2,m3](t) =

3∑
k=1

m1∑
α=0

m2∑
β=0

m3∑
γ=0

(
m1

α

)(
m2

β

)(
m3

γ

)
(3.55)

×Ak[m1 − α,m2 − β,m3 − γ, 0](t) Ai[α, β, γ, k](t)

Now since a/(|x|+ a) < 1, we can replace the 2κ exponent in the last term on the
right-hand side of inequality (3.53) with κ. This gives us∣∣∣∣∂∂t

(
∂m1+m2+m3 ui(x, t)

∂x1m1∂x2m2∂x3m3

)∣∣∣∣ ≤ aκ

(|x|+ a)κ
Fi[m1,m2,m3](t) (3.56)

where we have defined

Fi[m1,m2,m3](t) = νLi[m1,m2,m3] + PG[m1,m2,m3](t) + TTi[m1,m2,m3](t)

and since

∂

∂t

∣∣∣∣∂m1+m2+m3 ui(x, t)

∂x1m1∂x2m2∂x3m3

∣∣∣∣ ≤ ∣∣∣∣∂∂t
(
∂m1+m2+m3 ui(x, t)

∂x1m1∂x2m2∂x3m3

)∣∣∣∣ (3.57)

we have from inequality (3.56)

∂

∂t

∣∣∣∣∂m1+m2+m3 ui(x, t)

∂x1m1∂x2m2∂x3m3

∣∣∣∣ ≤ aκ

(|x|+ a)κ
Fi[m1,m2,m3](t) (3.58)

From this inequality, we see that the absolute values of the ui(x, t) and their spatial
derivatives must be differentiable with respect to time at all time values t for which
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the Fi[m1,m2,m3](t) functions remain finite. Therefore, we can integrate both
sides of this inequality with respect to time to obtain∣∣∣∣∂m1+m2+m3 ui(x, t)

∂x1m1∂x2m2∂x3m3

∣∣∣∣ ≤ aκ

(|x|+ a)κ

[∫ t

0

Fi[m1,m2,m3](t′) dt′ + C0
mi

]
(3.59)

where m = m1 + m2 + m3 and the C0
mi are the coefficients from the statement of

the main theorem used in defining the initial values for the ui(x, t) functions. From
this inequality, we see that a smooth solution will exist for the ui and their spatial
derivatives if the Fi functions remain finite for finite values of t. Also, note that∫ t

0

Fi[m1,m2,m3](t′) dt′ ≤ max
m=m1+m2+m3

∫ t

0

Fi[m1,m2,m3](t′) dt′ (3.60)

where the right-hand side of this inequality denotes the maximum of the time
integrals of the Fi[m1,m2,m3](t) functions such that m = m1 +m2 +m3. Inserting
inequality (3.60) into (3.59), we obtain∣∣∣∣∂m1+m2+m3 ui(x, t)

∂x1
m1∂x2

m2∂x3
m3

∣∣∣∣ ≤ aκ

(|x|+ a)κ

[
max

m=m1+m2+m3

∫ t

0

Fi[m1,m2,m3](t′) dt′ + C0
mi

]
(3.61)

Therefore, if we set

Cmi(t) = max
m=m1+m2+m3

∫ t

0

Fi[m1,m2,m3](t′) dt′ + C0
mi (3.62)

then we have ∣∣∣∣∂m1+m2+m3 ui(x, t)

∂x1m1∂x2m2∂x3m3

∣∣∣∣ ≤ aκ

(|x|+ a)κ
Cmi(t) (3.63)

Since the quantity on the right-hand side of inequality (3.62) depends on the sum
only of the m1,m2,m3 indices and not the indices individually, the Cmi(t) functions
defined in equation (3.63) satisfy the requirements of those in the main theorem.

Thus far, we have shown that a solution u(x, t) that is initially smooth (according
to the hypothesis of the main theorem) will remain smooth for as long as it exists.
Also, we have shown that for all times t for which a smooth fluid velocity u exists,
a smooth scalar pressure p also exists. However, we have not yet shown that such
a solution exists for all t > 0. Until proven otherwise, we must recognize the
possibility of a “smooth blowup” occurring where the fluid velocity reaches infinite
values at some point in finite time, despite the fact that the solution remains smooth
at all points prior to the blowup.

3.3 Existence of Pressure Gradient Integral over Time. Before showing that
the fluid velocity u must remain finite for all t > 0, we must first establish that
the time integral of the scalar pressure gradient ∇p exists over the half-open time
interval 0 ≤ t < Tb (assume the blowup time Tb exists) where u remains smooth as
defined in inequality (3.63). We start with the original Navier-Stokes equation.

∂ui
∂t

= ν∇2ui −
3∑
k=1

uk
∂ui
∂xk

− ∂p

∂xi
(2.4b)

Multiplying both sides of this equation by ui and summing over i, we obtain

3∑
i=1

ui
∂ui
∂t

= ν

3∑
i=1

ui∇2ui −
3∑
i=1

3∑
k=1

uiuk
∂ui
∂xk

−
3∑
i=1

ui
∂p

∂xi
(3.64)
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Since
∂

∂t

(
1

2
u2i

)
= ui

∂ui
∂t

Equation (3.64) can be written as

3∑
i=1

∂

∂t

(
1

2
u2i

)
= ν

3∑
i=1

ui∇2ui −
3∑
i=1

3∑
k=1

uk
∂

∂xk

(
1

2
u2i

)
−

3∑
i=1

ui
∂p

∂xi
(3.65)

From elementary vector analysis, we have

∇ · (ui∇ui) = ui∇ · (∇ui) + ∇ui · ∇ui = ui∇2ui + ∇ui · ∇ui

and therefore

ui∇2ui = ∇ · (ui∇ui) − ∇ui · ∇ui = ∇2

(
1

2
u2i

)
− ∇ui · ∇ui (3.66)

Inserting this result into equation (3.65), we obtain

3∑
i=1

∂

∂t

(
1

2
u2
i

)
= ν

3∑
i=1

∇2

(
1

2
u2
i

)
− ν

3∑
i=1

∇ui·∇ui −
3∑
i=1

3∑
k=1

uk
∂

∂xk

(
1

2
u2
i

)
−

3∑
i=1

ui
∂p

∂xi

(3.67)
If we define the energy density of fluid motion K as

K(x, t) =
1

2

3∑
i=1

(ui(x, t))
2 =

1

2
u(x, t) · u(x, t) (3.68)

equation (3.67) can be written as

∂K

∂t
= ν∇2K − ν

3∑
i=1

∇ui · ∇ui −
3∑
i=1

ui
∂K

∂xi
−

3∑
i=1

ui
∂p

∂xi

or equivalently

∂K

∂t
= ν∇2K − ν

3∑
i=1

∇ui · ∇ui − u · ∇K − u · ∇p (3.69)

= ν∇ · (∇K)− ν
3∑
i=1

(∇ui · ∇ui)−∇ · [(K + p)u]

where we have used the fact that ∇ · u = 0 in the last step. Let us now define the
total energy of fluid motion as

E(t) =

∫
R3

K(x, t) d3x (3.70)

The initial value E0 of this function was shown to be finite in equation (2.8). Let
us examine the evolution of the function E(t). Integrating equation (3.69) over R3

and using (3.70) gives us

dE

dt
= ν

∫
R3

∇· (∇K) d3x − ν

3∑
i=1

∫
R3

(∇ui ·∇ui) d3x −
∫
R3

∇· [(p +K)u)] d3x (3.71)

We now show that the first and third terms on the right-hand side of equation
(3.71) vanish. Integrating equation (3.69) over the spherical region in R3 defined
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by |x| ≤ R we have

∂

∂t

∫
|x|≤R

K(x, t) d3x = ν

∫
|x|≤R

∇ · (∇K) d3x − ν

3∑
i=1

∫
|x|≤R

(∇ui · ∇ui) d3x

−
∫
|x|≤R

∇ · [(p +K)u] d3x (3.72)

Applying the divergence theorem to the first and third terms on the right-hand side
of equation (3.72), we have

∂

∂t

∫
|x|≤R

K(x, t) d3x = ν

∫
|x|=R

∇K · er dS − ν

3∑
i=1

∫
|x|≤R

(∇ui · ∇ui) d3x

−
∫
|x|=R

(p +K)u · er dS (3.73)

where er is the unit vector in the radial direction. Differentiating both sides of
equation (3.68) with respect to xj gives us

∂K

∂xj
(x, t) =

3∑
i=1

ui(x, t)
∂ui
∂xj

(x, t) (3.74)

Since the function u must be consistent with inequality (3.63), we take the absolute
value of both sides of equation (3.74) and use inequality (3.63) along with the
triangle inequality to obtain∣∣∣∣∂K∂xj (x, t)

∣∣∣∣ ≤ 3∑
i=1

|ui(x, t)|
∣∣∣∣ ∂ui∂xj

(x, t)

∣∣∣∣ (3.75)

≤ a2κ

(|x|+ a)2κ

3∑
i=1

Ai[0, 0, 0; 0](t) Ai[0, 0, 0; j](t)

From this inequality, we have

|∇K(x, t)| ≤
3∑
i=1

∣∣∣∣∂K∂xi (x, t)
∣∣∣∣ ≤ 3∑

i=1

3∑
j=1

|ui(x, t)|
∣∣∣∣ ∂ui∂xj

(x, t)

∣∣∣∣ (3.76)

≤ a2κ

(|x|+ a)2κ

3∑
i=1

3∑
j=1

Ai[0, 0, 0; 0](t) Ai[0, 0, 0, j](t)

Applying inequality (3.76) to the first integral on the right-hand side of equation
(3.73) gives us∣∣∣∣∣

∫
|x|=R

∇K · er dS

∣∣∣∣∣ ≤
3∑
i=1

3∑
j=1

Ai[0, 0, 0; 0](t) Ai[0, 0, 0; j](t)

∫
|x|=R

a2κ

(|x|+ a)2κ
dS

(3.77)

=
4πR2a2κ

(R+ a)2κ

3∑
i=1

3∑
j=1

Ai[0, 0, 0; 0](t) Ai[0, 0, 0; j](t)

Taking the limit of both sides of this inequality as R→∞, we obtain

lim
R→∞

∫
|x|=R

∇K · er dS = 0 (3.78)
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From the last term on the right-hand side of equation (3.73), we have∣∣∣∣∣
∫
|x|=R

(p +K)u · er dS

∣∣∣∣∣ ≤
∫
|x|=R

|p +K||u| dS (3.79)

≤
∫
|x|=R

(
|p|(R) +K(R)

) aκA [|u|]
(R+ a)κ

dS

= 4πR2
(
|p|(R) +K(R)

) aκA [|u|]
(R+ a)κ

where we have defined |p|(R) and K(R) as the average values of |p| and K respec-
tively for |x| = R. Also, we have defined the fluid velocity magnitude coefficient
A[|u|](t) as

A[|u|](t) =

√√√√ 3∑
k=1

A2
k[0, 0, 0; 0](t) so that |u(x, t)| ≤ aκ

(|x|+ a)κ
A [|u|]

where the Ak[0, 0, 0; 0](t) are from equation (3.1). In the right-hand side of inequal-
ity (3.79), the scalar pressure p approaches zero as 1/R as R→∞, and the kinetic
energy density K approaches zero as 1/R2κ as R → ∞. Therefore, the first term
of the right-hand side of this inequality approaches zero as 1/Rκ−1 as R→∞, and
the second term approaches zero as 1/R3κ−2 as R →∞. Since κ > 3/2, it follows
then that both terms on the right-hand side of inequality (3.79) vanish as R→∞.
Therefore, we have

lim
R→∞

∫
|x|=R

(p +K)u · er dS = 0 (3.80)

Now we take the limit as R → ∞ of both sides of equation (3.73), and use (3.78)
and (3.80) to obtain

dE

dt
= −ν

3∑
i=1

∫
R3

(∇ui · ∇ui) d3x = −ν
3∑
i=1

3∑
j=1

∫
R3

(
∂ui
∂xj

(x, t)

)2

d3x (3.81)

Integrating equation (3.81) with respect to time gives us

E(t) = E0 − ν

3∑
i=1

3∑
j=1

∫ t

0

∫
R3

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ ≤ E0 (3.82)

Since E(t) ≥ 0 and ν > 0, the summation of the integrals in equation (3.82) must
be finite, and since each these of these integrals is positive, they must all be finite.
Therefore, we may write∫ t

0

∫
R3

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ = Wij(t) (3.83)

where each of the Wij(t) functions are finite for all t, provided only that the fluid
velocity u(x, t) remains smooth as defined in inequality (3.63). Let us now establish
a connection between the Wij(t) functions and the time integral of the scalar pres-
sure gradient. We first note that since the functions being integrated in equations
(3.82) and (3.83) are everywhere greater than or equal to zero, we may write∫ t

0

∫
S3(t′)

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ ≤
∫ t

0

∫
R3

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ = Wij(t) (3.84)
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where S3(t) can be any subset of R3 which may change with time. Let us now show
that ∫ t

0

∫
R3

∣∣∣∣ ∂ui∂xj
(x, t′)

∂uj
∂xi

(x, t′)

∣∣∣∣ d3x dt′ ≤ Wij(t) + Wji(t) i, j = 1, 2, 3 (3.85)

for all t such that u(x, t) remains smooth. We first define S3
ij(t) as the subset of

R3 (at time t) where |∂ui/∂xj | is greater than or equal to |∂uj/∂xi|. We may then
write ∫ t

0

∫
R3

∣∣∣∣ ∂ui∂xj
(x, t′)

∣∣∣∣ ∣∣∣∣∂uj∂xi
(x, t′)

∣∣∣∣ d3x dt′ ≤
∫ t

0

∫
S3
ij(t′)

(
∂ui

∂xj
(x, t′)

)2

d3x dt′ (3.86)

+

∫ t

0

∫
R3−S3

ij(t′)

(
∂uj

∂xi
(x, t′)

)2

d3x dt′

Since both integrands on the right-hand side of inequality (3.86) are positive and
the subsets S3

ij(t) and R3 − S3
ij(t) are both contained within R3 for any time t, we

have ∫ t

0

∫
S3
ij(t

′)

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ ≤
∫ t

0

∫
R3

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ (3.87)

and ∫ t

0

∫
R3−S3

ij(t′)

(
∂uj
∂xi

(x, t′)

)2

d3x dt′ ≤
∫ t

0

∫
R3

(
∂uj
∂xi

(x, t′)

)2

d3x dt′ (3.88)

Inserting these into inequality (3.87) then gives us∫ t

0

∫
R3

∣∣∣∣ ∂ui∂xj
(x, t′)

∂uj
∂xi

(x, t′)

∣∣∣∣ d3x dt′ ≤
∫ t

0

∫
R3

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ (3.89)

+

∫ t

0

∫
R3

(
∂uj
∂xi

(x, t′)

)2

d3x dt′

From the definition of the Wij(t) functions in equation (3.83), inequality (3.89) can
be written as ∫ t

0

∫
R3

∣∣∣∣ ∂ui∂xj
(x, t′)

∂uj
∂xi

(x, t′)

∣∣∣∣ d3x dt′ ≤ Wij(t) + Wji(t) (3.85)

thereby proving inequality (3.85). Applying the triangle inequality to equation
(2.13), we have

|Q(x, t)| ≤
3∑
i=1

3∑
j=1

∣∣∣∣ ∂ui∂xj
(x, t)

∂uj
∂xi

(x, t)

∣∣∣∣ (3.90)

Integrating this inequality over R3 and t such that u(x, t) remains smooth, and
using inequality (3.85) then gives us∫ t

0

∫
R3

|Q(x, t′)| d3x dt′ =

∫
R3

∫ t

0

|Q(x, t′)| dt′ d3x

≤
3∑
i=1

3∑
j=1

∫ t

0

∫
R3

∣∣∣∣ ∂ui∂xj
(x, t′)

∂uj
∂xi

(x, t′)

∣∣∣∣ d3x dt′ (3.91)

≤
3∑
i=1

3∑
j=1

[Wij(t) + Wji(t)] = 2

3∑
i=1

3∑
j=1

Wij(t)
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where we have reversed the order of integration over space and time. This is valid
since the solution u(x, t) and its spatial derivatives are smooth prior to any blowup.
Let us now define the function

q(x, t) =

∫ t

0

|Q(x, t′)| dt′ (3.92)

Inequality (3.91) can then be written as∫
R3

q(x, t) d3x ≤ 2

3∑
i=1

3∑
j=1

Wij(t) =
2

ν
[E0 − E(t)] ≤ 2E0

ν
(3.93)

where we have also used equations (3.82) and (3.83). From this inequality, we
see that the integral of q over R3, and therefore any subset thereof, is uniformly
bounded above for all time t such that the fluid velocity u(x, t) remains smooth.

At this point, we show that inequality (3.93) implies that the time integral of
|∇p| must remain finite for all x ∈ R3 regardless of how large u(x, t) becomes,
provided only that it remains smooth according to inequality (3.63). Applying the
triangle inequality to equation (2.16), we have

|∇p(x, t)| ≤ 1

4π

∫ ∗
R3

|Q(x′, t) | |x− x′|
|x− x′|3

d3x′ =
1

4π

∫ ∗
R3

|Q(x′, t)|
|x− x′|2

d3x′ (3.94)

where we have defined the above improper integral in the manner shown in equation
(2.15). Integrating both sides of this inequality with respect time gives us

Λ(x, t) =

∫ t

0

∣∣∇p(x, t′)∣∣ dt′ ≤ 1

4π

∫ t

0

∫ ∗
R3

|Q(x′, t′)|
|x− x′|2

d3x′ dt′ (3.95)

=
1

4π

∫ ∗
R3

∫ t

0

|Q(x′, t′)|
|x− x′|2

dt′ d3x′ =
1

4π

∫ ∗
R3

1

|x− x′|2
∫ t

0

|Q(x′, t′)| dt′ d3x′

=
1

4π

∫ ∗
R3

q(x′, t)

|x− x′|2
d3x′

where we have again reversed the order of integration over space and time, and
have defined

Λ(x, t) =

∫ t

0

|∇p(x, t′)| dt′ (3.96)

as the time integral of |∇p(x, t)|. Now, the integral on the right-hand side of
inequality (3.95) can be written as∫ ∗

R3

q(x′, t)

|x− x′|2
d3x′ =

∫
|x−x′|>R

q(x′, t)

|x− x′|2
d3x′ +

∫ ∗
|x−x′|≤R

q(x′, t)

|x− x′|2
d3x′ (3.97)

where R can be any number greater than zero, and we have defined the improper
integral ∫ ∗

|x−x′|≤R

q(x′, t)

|x− x′|2
d3x′ = lim

ε→0

∫
ε≤|x−x′|≤R

q(x′, t)

|x− x′|2
d3x′

For the first integral on the right-hand side of equation (3.97), we have∫
|x−x′|>R

q(x′, t)

|x− x′|2
d3x′ ≤

∫
|x−x′|>R

q(x′, t)

R2
d3x′ (3.98)

=
1

R2

∫
|x−x′|>R

q(x′, t) d3x′ ≤ 1

R2

∫
R3

q(x′, t) d3x′ ≤ 2E0

νR2
= finite

and therefore this integral is finite for any t ≥ 0.
18



For the second integral on the right-hand side of equation (3.97), we first define
a set of primed coordinates such that

x′ = x + r′ sin θ′ cosφ′e1 + r′ sin θ′ sinφ′e2 + r′ cos θ′e3

Then this integral can be written as∫ ∗
|x−x′|≤R

q(x′, t)

|x− x′|2
d3x′ = lim

ε→0

∫ R

ε

∫ π

0

∫ 2π

0

1

r′2
q(x′(r′, θ′, φ′, t)) r′2 sin θ′ dφ′ dθ′ dr′

= lim
ε→0

∫ R

ε

∫ π

0

∫ 2π

0

q(x′(r′, θ′, φ′, t)) sin θ′ dφ′ dθ′ dr′ (3.99)

= lim
ε→0

∫ R

ε

∫
Ω

q(x′(r′, θ′, φ′, t)) dΩ′ dr′

where the inside integral is over solid angle of a sphere centered at the field point
x. Now, from inequality (3.93), we see that q(x′, t) is integrable over all x′ ∈ R3

and pre-blowup time t. This is true even if q approaches spatial singularities as t
approaches a finite blowup time. Therefore, the integral of q(x′(r′, θ′, φ′), t) over
any finite range of spherical coordinates must also be finite, provided r′ > 0. 3 This
implies that the integral on the right-hand side of equation (3.99) must be finite
for all ε > 0, and can therefore be used in evaluating the limit of this integral as
ε→ 0. Furthermore, in taking the limit as ε→ 0 in this equation, we are excluding
the effect of any singularity occurring in q(x′, t) at the field point x. Therefore, we
may write ∫ ∗

|x−x′|≤R

q(x′, t)

|x− x′|2
d3x′ = finite (3.100)

Inserting equations (3.97)-(3.100) into equation (3.95), we then have

Λ(x, t) =

∫ t

0

|∇p(x, t′)| dt′ ≤ 1

4π

∫ ∗
|x−x′|≤R

q(x′, t′)

|x− x′|2
d3x′ +

E0

2πνR2
(3.101)

= finite

The fact that Λ(x, t) remains finite as t → Tb despite a possible blowup in q(x, t)
at this time can also be shown as follows. From equation (3.92), we see that if q
blows up at field point x and time Tb, then Q must do so also. Then, from equation
(2.14), we that a blowup in Q(x, t) as t→ Tb implies that the scalar pressure p also
has a blowup at this point and time.

Now, in the discussion following equation (3.63), we see that a blowup in p must
be a “smooth blowup” where p and all of its spatial derivatives of are defined at
all times t < Tb. In this case, a global maximum in |p| must form at the blowup
point x immediately before the blowup time. Otherwise, the blowup would occur
first at some other point x∗ such that |p(x∗, t)| > |p(x, t)|. But since p is a spatially
smooth function up to the blowup time Tb, it’s extremum values can only occur
where ∇p = 0. Therefore, we must have |∇p(x, Tb)| = 0, where x is the field and
blowup point. This implies that |∇p(x, t)| is bounded and continuous on the closed
time interval 0 ≤ t ≤ Tb, and therefore the time integral of |∇p(x, t)| over this time
interval must be finite.

It should be noted here that although we have shown that Λ(x, t) is defined (ie.
finite) for all x ∈ R3 and t ≥ 0, we have not established an upper bound for Λ. This

3This is because at r′ = 0, the transformation of the integral from Cartesian (or rectangular)
coordinates to spherical coordinates becomes undefined (ie. the Jacobian factor r′2 sin θ′ vanishes).
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can be a point of confusion for some readers who tend to believe that it is necessary
to show an upper bound to Λ in order to prove it is defined. This, however, is not
true as can be seen in the following example where q is taken as proportional to the
Dirac δ function. In this case, we have Λ = 1/|x− x′|2 if x 6= x′ and Λ = (finite) if
x = x′. This function is defined but certainly not bounded for all x and x′ ∈ R3.

For those familiar with electrostatics, this problem is analogous to calculating
the electric field E(x) inside a charge distribution. This field is determined by
carrying out a vector sum of the fields due to the charges at other points x′ in
the distribution. The contribution to E(x) from any charge at the field point x is
excluded from the summation, even if there is a point charge at x. In this case, E
would be very strong at points near x, but this charge would contribute nothing to
the field E at x. Otherwise, the charge would be exerting a force on itself, causing
its own acceleration, which is physically impossible.

At this point, we have shown that Λ(x, t) defined in equation (3.96) exists (ie.
is finite) for all x ∈ R3 and t ≥ 0. This plays a vital role in proving existence and
smoothness of the solutions u and p, as we will see in the next section.

3.4 Existence and Smoothness of Solution over Time. At this point, we
show that a solution u(x, t) consistent with the initial conditions specified in the
problem description will exist and remain smooth for all t ≥ 0. That is, no blowups
occur where the solution becomes infinite at some location in finite time.

We conjecture that a blowup does occur at some point xb ∈ R3 and finite time Tb,
and then show that no such time Tb exists. Now, the solution u(x, t) must remain
smooth at all points x ∈ R3 and all times t < Tb prior to the blowup. Although a
blowup may be in progress, the solution u still exists and must therefore be smooth
in the sense of inequality (3.63). This means that the blowup point xb must evolve
from a global maximum point. Otherwise, the blowup would occur first at some
other point x such that |u(x, t)| > |u(xb, t)|, thereby contradicting our definition of
the blowup point xb. Therefore, we define tb as the time a global maximum forms
at xb, leading to the blowup at time Tb. Also, understand that for tb ≤ t < Tb, the
global maximum of K must remain at xb. Otherwise, the blowup would start at
the new maximum point, thereby contradicting our definition of xb as the blowup
point. As t→ Tb, u(xb, t) would reach arbitrarily high values as a spatially smooth
function for t sufficiently close to Tb. This is how a smooth blowup is defined, which
is the only type of blowup that is possible in this problem.

Let us now determine if u(xb, t) does reach such high values as t→ Tb. Inserting
xb into equation (3.69) and integrating with respect to time gives us

K(xb, t)−K(xb, 0) =

∫ t

0

[
ν∇2K(xb, t

′)− ν
3∑
i=1

|∇ui(xb, t′)|2 (3.102)

− u(xb, t
′) · ∇K(xb, t

′)− u(xb, t
′) · ∇p(xb, t′)

]
dt′

If t > tb, equation (3.102) may be written as

K(xb, t) = K(xb, tb) + Kb(t) (3.103)
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where we have defined

Kb(t) =

∫ t

tb

[
ν∇2K(xb, t

′)− ν
3∑
i=1

|∇ui(xb, t′)|2 (3.104)

− u(xb, t
′) · ∇K(xb, t

′)− u(xb, t
′) · ∇p(xb, t′)

]
dt′

Note that the function being integrated in the integral defining K(xb, tb) is smooth
over the entire integration interval [0, tb], and this interval is finite. Therefore,
K(xb, tb) must be finite. Differentiating equation (3.104) with respect to t then
gives us

dKb

dt
= ν∇2K(xb, t)− ν

3∑
i=1

|∇ui(xb, t)|2 (3.105)

− u(xb, t) · ∇K(xb, t)− u(xb, t) · ∇p(xb, t)

Now since xb is a relative maximum of K, and K is a smooth function, we must
have ∇K(xb, t) = 0, and the third term on the right-hand side of equation (3.105)
vanishes. Therefore, equation (3.105) becomes

dKb

dt
= ν∇2K(xb, t)− ν

3∑
i=1

|∇ui(xb, t)|2 − u(xb, t) · ∇p(xb, t)

Also, we must have ∇2K(xb, t) ≤ 0. This comes from the “second derivative test”
for a relative maximum or minimum at a stationary point in a smooth function.
The second term on the right-hand side is also negative or zero since |∇ui|2 ≥ 0.
Therefore, equation (3.105) implies that

dKb

dt
(t) ≤ − u(xb, t) · ∇p(xb, t) (3.106)

Now, the maximum value that can be obtain on the right-hand side of this inequality
occurs for the case where u(xb, t) and ∇p(xb, t) are anti-parallel vectors. In this
case, we have

dKb

dt
(t) ≤ |u(xb, t)||∇p(xb, t)| =

√
2 |∇p(xb, t)|

√
Kb(t) (3.107)

At this point, we define the function K∗b (t) as the maximum value of Kb(t) allowed
by inequality (3.107) for tb ≤ t < Tb. Therefore, we have

dK∗b
dt

=
√

2 |∇p(xb, t)|
√
K∗b (t) (3.108)

To solve this equation, we divide both sides by
√
K∗b and integrate with respect to

t to obtain

K∗b (t) =
1

2

(∫ t

tb

|∇p(xb, t′)| dt′
)2

(3.109)

From inequality (3.101), we see that the time integral in this equation is finite for
all values of t > tb. Therefore, K∗b (t) and Kb(t) must be finite for all t > 0. From
equation (3.105) then, we see that K(xb, t) is finite at all times, and therefore there
exists no blowup time Tb such that K becomes arbitrarily large for t sufficiently
close to Tb.
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Hence, the conjectured smooth blowup cannot occur, and we have shown exis-
tence and smoothness of the solution [u(x, t), p(x, t)] for all x ∈ R3 and t ≥ 0, and
the existence of solution part of our main theorem is proven.

3.5 Uniqueness of Solution. Let us now show that the solution of the given
problem is in fact unique. We start by defining u(1)(x, t) and u(2)(x, t) along with
the corresponding scalar pressure functions p(1)(x, t) and p(2)(x, t) as two possible
solutions of equation (2.4) with initial condition (2.5) and zero-divergence constraint
(2.9). We therefore write

∂u(1)

∂t
= ν∇2u(1) − (u(1) · ∇)u(1) −∇p(1) (3.110)

and
∂u(2)

∂t
= ν∇2u(2) − (u(2) · ∇)u(2) −∇p(2) (3.111)

Subtracting equation (3.110) from (3.111), we have

∂D

∂t
= ν∇2D− (u(2) · ∇)D− (D · ∇)u(1) +∇p(1) −∇p(2) (3.112)

where we have defined

D(x, t) = u(2)(x, t)− u(1)(x, t) (3.113)

as the difference between the two solutions. Uniqueness will be proven if we can
show that D(x, t) = 0 for all x ∈ R3 and t ≥ 0.

Taking the scalar product of both sides of equation (3.112) with D, we have

D · ∂D
∂t

= νD · ∇2D−D ·
[
(u(2) · ∇)D

]
−D ·

[
(D · ∇)u(1)

]
+ D · ∇p(1) −D · ∇p(2)

= ν

3∑
i=1

Di∇2Di −
3∑
i=1

3∑
k=1

Diu
(2)
k

∂Di
∂xk

−
3∑
i=1

3∑
k=1

DiDk
∂u

(1)
i

∂xk
−D · (∇p(2) −∇p(1))

= ν

3∑
i=1

∇ · (Di∇Di)− ν
3∑
i=1

(∇Di) · (∇Di)− u(2) · ∇
(

1

2
D ·D

)
(3.114)

−D ·
[
(D · ∇)u(1)

]
−D · (∇p(2) −∇p(1))

= ν

3∑
i=1

∇ · (Di∇Di)− ν
3∑
i=1

(∇Di) · (∇Di)−∇ ·
(

1

2
(D ·D)u(2)

)
+

1

2
(D ·D)∇ · u(2)

−D ·
[
(D · ∇)u(1)

]
−∇ ·

[
(p(2) − p(1))D

]
+ (p(2) − p(1))∇ ·D

Since ∇ · u(2) = 0 and ∇ ·D = 0, the fourth and seventh terms on the right-hand
side of this equation vanish, and we write

∂WD

∂t
= ν

3∑
i=1

∇ · (Di∇Di)− ν
3∑
i=1

(∇Di) · (∇Di) (3.115)

−∇ ·
(
WDu

(2)
)
−D ·

[
(D · ∇)u(1)

]
−∇ · (pDD)

where we have defined the normalized energy density WD associated with D, and
pressure difference pD as

WD =
1

2
(D ·D) and pD = p(2) − p(1) (3.116),(3.117)
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Integrating equation (3.115) over all R3 space, we obtain

dED
dt

= ν

3∑
i=1

∫
R3

∇ · (Di∇Di) d3x− ν
∫
R3

3∑
i=1

(∇Di) · (∇Di) d3x (3.118)

−
∫
R3

∇ ·
(
WDu

(2)
)
d3x−

∫
R3

D ·
[
(D · ∇)u(1)

]
d3x−

∫
R3

∇ · (pDD) d3x

where we have defined the normalized total energy density associated with D as

ED(t) =

∫
R3

WD(x, t) d3x =
1

2

∫
R3

D(x, t) ·D(x, t) d3x (3.119)

The first, third, and fifth terms on the right-hand side of equation (3.118) vanish
via the divergence theorem and the fact that the integrands in each of these terms
approach zero as 1/(|x|+ a)2κ as |x| → ∞. Therefore, equation (3.118) becomes

dED
dt

= −
∫
R3

(
3∑
i=1

ν(∇Di) · (∇Di) + D ·
[
(D · ∇)u(1)

])
d3x = Y (t) (3.120)

where we have defined

Y (t) = −
∫
R3

(
3∑
i=1

ν(∇Di) · (∇Di) + D ·
[
(D · ∇)u(1)

])
d3x (3.121)

At this point, we can show that ED(t) = 0 and Y (t) = 0 for all times t using a
simple finite difference approach. We first define a set of N discrete time values t′n
such that

0 = t′0 < t′1 < t′2 < ... < t′N = t (3.122)

Let us suppose that D(x, t′n) = 0 for all x ∈ R3 at some time step n. Then,
according to equations (3.119) and (3.121), we would have ED(t′n) = 0 and Y (t′n) =
0. Applying the finite difference method at this time step, we write ED(t′n+1) at
the next time step as

ED(t′n+1) = ED(t′n) +
dED
dt

(t′n) (t′n+1 − t′n) (3.123)

= ED(t′n) + Y (t′n) (t′n+1 − t′n)

where we have used equation (3.120) in the last step. But since D(x, t′n) = 0 for
all x ∈ R3, we must have Y (t′n) = 0 according to equation (3.121). Therefore,
equation (3.123) reduces to

ED(t′n+1) = ED(t′n) = 0 (3.124)

and since D(x, t) is a smooth function, it then follows from equation (3.119) that
D(x, t′n+1) = 0 for all x ∈ R3. Hence, we have shown that if D(x, t′n) = 0 for all
x ∈ R3, then the same must be true for D(x, t′n+1). From this, it follows inductively
that since D(x, 0) = D(x, t′0) = 0 for all x ∈ R3, we must have

D(x, t′n) = 0 for 0 ≤ n ≤ N and x ∈ R3 (3.125)

and therefore D(x, t) = D(x, t′N ) = 0. Since this holds for all values of ∆t′n =
t′n+1− t′n, it must also hold in the limit as the ∆t′n → 0. Therefore, we have shown
that D(x, t) = 0 for all x ∈ R3 and t ≥ 0. Hence, the uniqueness part of the main
theorem is proven.
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4.0 Conclusion

In this paper, we have shown existence and smoothness of a solution to the zero
driving-force Navier-Stokes equation in free space with given initial fluid velocity
and spatial derivatives profiles which approach zero as aκ/(|x| + a)κ as |x| → ∞,
assuming a scalar pressure and incompressibility of the fluid. While the existence
of such a solution initially was a given, the continuation of this solution for all
times t ≥ 0 needed to be proven. First, it was shown that the solution u(x, t)
must remain smooth for as long as it does exist (ie. remains finite). Therefore, if
u(x, t) becomes infinitely large in finite time, it must be a “smooth blowup” where
a global maximum first forms at the blowup point, and the fluid velocity reaches
infinite values at this point. It was shown, however, that this smooth blowup
could not occur since at a maximum point, the Navier-Stokes equation predicts
that the only force that can provide positive acceleration to the fluid element is the
scalar pressure gradient. The maximum total increase in fluid velocity provided by
this force is given by the time integral of |∇p(xb, t)| after formation of the global
maximum. This integral, however, was shown to be finite for all times that the fluid
velocity remained smooth, and therefore a smooth blowup is not possible. Finally,
we showed that the solution for a given initial fluid velocity u(x, 0) = u0(x) is
unique.
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10. A. Prástaro, Geometry of PDE’s. IV: Navier-Stokes equation and integral bordism
groups, J. Math. Anal. Appl. 338(2)(2008), 1140-1151. DOI: 10.1016/j.jmaa.2007.06.009.
MR2386488(2009j:58028); Zbl 1135.35064]

11. T. Tao, Why global regularity for Navier-Stokes is hard,

https://terrytao.wordpress.com/2007/03/18/why-global-regularity-for-navier-stokes-is-
hard/, March 18, 2007.

12. David Shirokoff, I. A Pressure Poisson Method for the Incompressible Navier-Stokes Equa-
tions II. Long Time Behavior of the Klein-Gordon Equations, Archives, Massachusetts Insti-
tute of Technology Libraries, September 22, 2011.

13. P. M. Gresho and R. L. Sani, “On presssure boundary conditions for the incompressible
Navier-Stokes equations”. Int. J. Numer. Methods Fluids, 7:1111-1145, 1987.

24



14. Ronald B. Guenther, John W. Lee, Partial Differential Equations of Mathematical Physics
and Integral Equations, Dover Publications, Inc. 1988, pp. 306-313.

15. Clive R. Chester, Techniques in Partial Differential Equations, McGraw-Hill Book Company,

1971, pp. 92-95.
16. J.D. Jackson, Classical Electrodynamics, Third Edition, John Wiley and Sons, Inc., 1999, pp.

34-40.

25


