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Abstract. Existence of a solution to the driving-force free Navier-Stokes

equation with a given initial fluid velocity profile is proven assuming a scalar

pressure function and incompressible flow. It is assumed that the fluid is flow-
ing in free space under the forces of viscosity and scalar pressure gradients

only, and that there are no external driving forces. Also, it is assumed that

the absolute value of the initial velocity profile and all of its spatial derivatives
approach zero as 1/(|x| + a)κ as |x| → ∞, where κ is a constant such that

3/2 < κ ≤ 2, and a is a positive constant. First, we show that for any velocity
profile with this spatial characteristic, there exists a scalar pressure gradient

with an absolute value that also approaches zero as 1/(|x|+ a)κ as |x| → ∞.

We then show that any fluid velocity solution would retain this spatial profile
characteristic when propagated in time over a finite interval 0 ≤ t ≤ T . Next,

we show that such a solution is bounded over all x ∈ R3 and t > 0, thereby

establishing existence and smoothness. The key step to proving this is to show
that the time integral of the scalar pressure gradient ∇p, which is basically

the total impulse per unit volume due the pressure gradient, is continuous and

bounded at all times t > 0, regardless of any irregularities that may arise in the
solution u or its spatial derivatives. This is because it is the Poisson integral

that is used to obtain p and ∇p, and the integration process tends to “smooth

over” any irregularities in the ∂ui/∂xj . Then, since the time integral of ∇p
acting on a fluid element at the spatial maximum of K = u · u/2 can only be

finite, the growth of the global maximum of K during the integration time can
also only be finite. Therefore a “smooth blowup” of the solution u(x, t) and

p(x, t) cannot occur. In fact, u(x, t)→ 0 over all of x ∈ R3 as t→∞. Finally,

we show that the solution u(x, t) and p(x, t) is unique.

Introduction

The Navier-Stokes equation is one of several equations which governs fluid mo-
tion. Essentially, it is a statement of Newton’s Second Law (F = ma) applied to the
infinitesimal fluid elements, taking into account the pressure gradients and forces
due to viscosity. Proving existence and uniqueness of solutions to this equation with
various initial conditions and driving forces has been of great interest to the mathe-
matics community (Ref. 1, 2). In this paper, we prove existence and smoothness of
a solution to the zero driving-force Navier-Stokes equation for incompressible fluid
flow, given a smooth initial fluid velocity profile.

The approach is to first establish existence and spatial dependence of the scalar
pressure function at a particular time, given the fluid velocity as a function of
the spatial position x at that time. As we will see later, this scalar pressure p
not only exists but is also spatially continuous, even if smoothness of the solution
u(x, t) and its spatial derivatives breaks down. This is because p is a solution to
the Poisson equation where the inhomogeneous term Q(x, t) specifically depends
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on the ∂ui/∂xj derivatives, and the solution is obtained from the Poisson integral
of this Q function. As with integrations in general, this integral tends to “smooth
over” erratic behavior of the integrand, and therefore p and ∇p are not sensitive to
discontinuities, spiking on sets of zero volume, or other forms of spatial “roughness”
of the fluid velocity components ui or their spatial derivatives.

We then define a finite difference approximation of the solution that uses the
maximum fluid velocity profile along with the determined scalar pressure gradients
at each time step to determine the maximum fluid velocity profile at the next time
step. This establishes that if a solution does exist, then it will comply with the
boundary conditions “at infinity” and will be of finite energy.

Next, we establish a connection between the first spatial derivatives ∂ui/∂xj
and the time integral of ∇p. Here, it is shown that this time integral is finite for
all x ∈ R3 and t > 0. Therefore, the change in momentum per unit volume from
∇p acting on a fluid element is also finite. If this fluid element is at the global
maximum point of K (or equivalently |u|), then ∇p is the only force acting on
it that could result in a positive acceleration, or increase in K. But since this
change in momentum is finite, so is the final value of K at any time t > 0. This
establishes that a smooth, finite solution u(x, t) and p(x, t) exists for the given
problem. Finally, we show that this solution is unique.

Problem Description

Written in vector form, the Navier-Stokes equation is given by

ρ

[
∂u

∂t
+ (u · ∇)u

]
= σ∇2u − ∇P + F(x, t) (1)

where u is the fluid velocity, ρ is the fluid density, P is pressure, σ is the viscosity
coefficient, and F is the external force per unit volume acting on the fluid elements.
In addition to satisfying equation (1), a solution u must also satisfy the equation
of continuity, or mass balance, which is given by

∂ρ

∂t
+ ∇ · (ρu) = 0 (2)

This equation states that whatever net fluid mass (per unit time) flows into a fluid
element must appear as increased mass of the element, or equivalently, the mass
density at that point in the fluid space.

In the problem we are considering, we assume an incompressible fluid, and there-
fore the density is constant. In this case, we can write equation (1) as

∂u

∂t
+ (u · ∇)u = ν∇2u − ∇p + f(x, t) (3)

where ν = σ/ρ is the normalized viscosity coefficient, p = (P − PA)/ρ is the
normalized pressure, PA is the ambient pressure (ie. the pressure at infinity), and
f = F/ρ is the force per unit mass acting on the fluid elements. Also we assume
that all external forces acting on the fluid are zero for t > 0. That is, we assume
that external forces may have acted on the fluid at times t < 0, thereby giving rise
to an initial fluid velocity profile u0(x) at t = 0 which we will assume is known.
Therefore, equation (3) becomes

∂u

∂t
= ν∇2u − (u · ∇)u − ∇p (4a)
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or equivalently

∂ui
∂t

= ν∇2ui −
3∑
k=1

uk
∂ui
∂xk

− ∂p

∂xi
(4b)

for our current problem. The initial condition on u is given by

u(x, 0) = u0(x) or ui(x, 0) = u0
i (x), i = 1, 2, 3 (5)

where u0(x) is a specified vector function of the spatial coordinates. Furthermore,
we will assume that u0(x) ∈ C∞ (ie. has continuous partial derivatives to all orders
with respect to each spatial variable). For a smooth, physically acceptable solution,
we must also assume there exist constants a and Cm such that∣∣∣∣ ∂m1+m2+m3u0

i

∂xm1∂xm2∂xm3

∣∣∣∣ ≤ a2 Cm
(|x|+ a)κ

=
∣∣∂mx u0

i (x)
∣∣ (6)

where m = m1 +m2 +m3, ∂mx denotes any mth order spatial derivative, and κ can
be any constant such that 3/2 < κ ≤ 2. These conditions ensure that the initial
total energy of fluid motion given by

E0 =

∫
R3

1

2

∣∣u0(x, t)
∣∣2 d3x (7)

is finite and that the scalar pressure function p exists. Also, as will be shown later,
the pressure gradient |∇p| approaches zero as a2/(|x|+a)2 as |x| → ∞ for any such
value of κ between 3/2 and 2. Therefore, the fluid velocity components ui need not
approach zero as |x| → ∞ any faster than a2/(|x| + a)2, even if the chosen initial
conditions are consistent with values of κ > 2. To show the initial energy of fluid
motion is finite, we insert inequality (6) into (7) and obtain

E0 =

∫
R3

1

2

∣∣u0(x, t)
∣∣2 d3x ≤ 1

2
a2κC2

0

3∑
i=1

∫
R3

d3x

(|x|+ a)2κ

= 2πa2κC2
0

3∑
i=1

∫ ∞
0

r2

(r + a)2κ
dr = 6πa2κC2

0

∫ ∞
0

r2

(r + a)2κ
dr (8)

= 6πa3C2
0

(
1

2κ− 3
− 1

κ− 1
+

1

2κ− 1

)
=

6πa3C2
0

(2κ− 3)(κ− 1)(2κ− 1)

From this equation we see that κ must be greater than 3/2 for a finite E0.
Now let us consider the issue of ∇ · u and the pressure gradient ∇p. Since ρ is

constant, we see from equation (2) that we must have

∇ · u(x, t) =

3∑
k=1

∂uk
∂xk

(x, t) = 0 (9)

in order to satisfy the equation of continuity. Therefore u0(x) in equation (5) must
be a divergence-free vector function. Taking the divergence of both sides of equation
(4a), we have

∂

∂t
(∇ · u) + ∇ · [(u · ∇)u] = ν∇2(∇ · u) − ∇2p (10)

Inserting equation (9) into (10), we obtain

∇2p = −∇ · [(u · ∇)u] (11)

Carrying out the differentiations indicated on the right hand side of equation (11),
and using equation (9), we have

∇2p = −
3∑
j=1

3∑
k=1

(
∂uj
∂xk

)(
∂uk
∂xj

)
= −Q(x, t) (12)
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(See Ref. 2, p. 35) where we have defined

Q(x, t) =

3∑
j=1

3∑
k=1

(
∂uj
∂xk

(x, t)
∂uk
∂xj

(x, t)

)
(13)

Equation (12) governs the pressure needed in order to satisfy equation (9). If the
partial derivatives of the uj and uk on the right-hand side of equation (12) are
known functions of the spatial coordinates x, we can solve this equation as a form
of Poisson’s equation. From potential theory (Ref. 3, 4, 5), the solution is

p(x, t) =

∫
R3

G(x,x′)Q(x′, t) d3x′ = − 1

4π

∫
R3

Q(x′, t)

|x− x′|d
3x′ (14)

where

G(x,x′) = − 1

4π

1

|x− x′| (15)

is the Greens function associated with the Poisson equation and the boundary
condition that the solution approach zero as |x| approaches infinity. Taking the
gradient of both sides of equation (14), we have

∇p(x, t) = − 1

4π

∫
R3

Q(x′, t)
(x− x′)

|x− x′|3
d3x′ (16)

Existence and Uniqueness of Solution

Existence and Spatial Dependence of Scalar Pressure Function. Before
demonstrating a solution to the Navier-Stokes equation (4) with the given initial
condition and incompressibility constraint, we must first verify that the scalar pres-
sure function p does in fact exist and has the proper spatial dependence for fluid
velocity fields u(x, t) that satisfy

|ui(x, t)| ≤
aκ

(|x|+ a)κ
A [ui] (t) (17)∣∣∣∣ ∂ui∂xj

(x, t)

∣∣∣∣ ≤ aκ

(|x|+ a)κ
A

[
∂ui
∂xj

]
(t) (18)

and in general∣∣∣∣ ∂m1+m2+m3ui
∂xm1

1 ∂xm2
2 ∂xm3

3

(x, t)

∣∣∣∣ ≤ aκ

(|x|+ a)κ
A

[
∂m1+m2+m3ui
∂xm1

1 ∂xm2
2 ∂xm3

3

]
(t) (19)

where the A[] coefficients may vary with time but not the spatial coordinates.1

Note that the Cm coefficients from inequality (6) can be used as initial values for
the A[](t) functions in (17)-(19). In this section, these inequalities are taken as a
given, and we show that the scalar pressure function p and its gradient ∇p exists
for fluid velocity spatial profiles satisfying these boundary conditions “at infinity”.
In the following sections, we use the initial conditions along with the results of
this section to show that solutions u(x, t) to the Navier-Stokes equation do in fact
satisfy (17)-(19) for all values of t for which u(x, t) remains defined.

We start by obtaining expressions, based on the Poisson integral, for p and its
spatial derivatives. Let us choose three non-negative integers m1, m2, and m3, and

1Throughout this section, we use A[f ] to denote a proportionality coefficient associated with
the function f enclosed in the square brackets, where f has the property of approaching zero
as 1/(|x| + a)κ as |x| → ∞. This coefficient, which may depend on time but not the spacial

coordinates, is defined such that |f(x, t)| ≤ aκA[f ]/(|x|+ a)κ. This notation was chosen in order
to avoid large numbers of variable names and/or subscripts and confusion about their meanings.
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different equation (12) m1 times with respect to x1, m2 times with respect to x2,
and m3 times with respect to x3. The result is

∇2

(
∂m1+m2+m3 p(x, t)

∂m1x1∂m2x2∂m3x3

)
= − ∂m1+m2+m3 Q(x, t)

∂m1x1∂m2x2∂m3x3
(20)

Then, using the same potential theory that was used in equation (14), we obtain

∂m1+m2+m3 p(x, t)

∂m1x1∂m2x2∂m3x3
= − 1

4π

∫
R3

1

|x− x′|
∂m1+m2+m3 Q(x′, t)

∂m1x1∂m2x2∂m3x3
d3x′ (21)

We also obtain the spatial derivatives of the ∇p components (ie. ∂p/∂xi) by dif-
ferentiating equation (21) with respect to xi. The result is

∂h

∂xi
=

∂m1+m2+m3+1 p(x, t)

∂m1x1∂m2x2∂m3x3∂xi
= − 1

4π

∫
R3

xi − x′i
|x− x′|3

∂m1+m2+m3 Q(x′, t)

∂m1x1∂m2x2∂m3x3
d3x′ (22)

where we have defined the function h as

h(x, t) = h[m1,m2,m3](x, t) =
∂m1+m2+m3 p(x, t)

∂m1x1∂m2x2∂m3x3
(23)

We now differentiate equation (13) m1 times with respect to x1, m2 times with
respect to x2, and m3 times with respect to x3 to obtain

∂m1+m2+m3Q(x, t)

∂x1
m1∂x2

m2∂x3
m3

=

3∑
j=0

3∑
k=0

m1∑
α=0

m2∑
β=0

m3∑
γ=0

(
m1

α

)(
m2

β

)(
m3

γ

)
∂m1+m2+m3−α−β−γ+1uk(x, t)

∂x1
m1−α∂x2

m2−β∂x3
m3−γ∂xj

×
∂m1+m2+m3+1uj(x, t)

∂x1
m1∂x2

m2∂x3
m3∂xk

(24)

where we have used the Leibnitz rule for determining higher derivatives of the prod-
uct of two functions. The quantities in parentheses to the right of the summation
signs are binomial coefficients. Since, by hypothesis, each of the derivatives on the
right-hand side of equation (24) approaches zero as 1/(|x| + a)κ as |x| increases,
this equation implies ∣∣∣∣ ∂m1+m2+m3Q(x, t)

∂x1
m1∂x2

m2∂x3
m3

∣∣∣∣ ≤ a2κB(t)

(|x|+ a)2κ
(25)

where

B(t) =
3∑
j=i

3∑
k=1

m1∑
α=0

m2∑
β=0

m3∑
γ=0

(
m1

α

)(
m2

β

)(
m3

γ

)

× A

[
∂m1+m2+m3−α−β−γ+1uk(x, t)

∂x1
m1−α∂x2

m2−β∂x3
m3−γ∂xj

]
A

[
∂m1+m2+m3+1uj(x, t)

∂x1
m1∂x2

m2∂x3
m3∂xk

]
(26)

and the A[] coefficients are defined in inequality (19). Taking the absolute value of
both sides of equation (21) and using the triangle inequality, we have∣∣∣∣ ∂m1+m2+m3 p(x, t)

∂m1x1∂m2x2∂m3x3

∣∣∣∣ ≤ 1

4π

∫
R3

1

|x− x′|

∣∣∣∣ ∂m1+m2+m3 Q

∂xm1
1 ∂xm2

2 ∂xm3
3

(x′, t)

∣∣∣∣ d3x′

≤ 1

4π

∫
R3

1

|x− x′|
a2κB(t)

(|x′|+ a)2κ
d3x′ (27)

Expressing the integral on the right-hand side of this inequality in spherical coor-
dinates, we write∣∣∣∣∣ ∂m1+m2+m3 p(x, t)

∂m1x1∂m2x2∂m3x3

∣∣∣∣∣ ≤ 1

4π
B(t)

∫ ∞
0

∫ π

0

∫ 2π

0

a2κ

(r′ + a)2κ
r′2sinθ′

[r2 + r′2 − 2rr′ cos θ′]1/2
dφ
′
dθ
′
dr
′

(28)
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Performing the integration over φ and making the change of variable v′ = cos θ′

gives us∣∣∣∣ ∂m1+m2+m3 p(x, t)

∂m1x1∂m2x2∂m3x3

∣∣∣∣ ≤ 1

2
B(t)

∫ ∞
0

∫ 1

−1

a2κ

(r′ + a)2κ

r′2[
r2 + r′2 − 2rr′v′

]1/2 dv′ dr′ (29)

We now carry out the integration over v′ to obtain

∣∣∣∣ ∂m1+m2+m3 p(x, t)

∂m1x1∂m2x2∂m3x3

∣∣∣∣ ≤ 1

2
B(t)

∫ ∞
0

a2κ

(r′ + a)2κ

[
r2 + r′2 − 2rr′v′

]1/2
r′2

−rr′
|1−1 dr

′

=
1

2
B(t)

∫ ∞
0

a2κ

(r′ + a)2κ
r + r′ − |r − r′|r r′ dr′ (30)

=
B(t)

r

∫ r

0

a2κ

(r′ + a)2κ
r′

2
dr′ + B(t)

∫ ∞
r

a2κ

(r′ + a)2κ

r′2

r′
dr′

Since r′ > r in the second term on the right-hand side of this inequality, we have

|h| ≤ B(t)

r

∫ r

0

a2κ

(r′ + a)2κ
r′

2
dr′ +

B(t)

r

∫ ∞
r

a2κ

(r′ + a)2κ
r′

2
dr′

=
B(t)

r

∫ ∞
0

a2κ

(r′ + a)2κ
r′

2
dr′ =

a3 B(t)

(2κ− 3)(κ− 1)(2κ− 1) r
(31)

From this inequality, we see that p and its spatial derivatives approach zero at least
as fast as 1/r as r gets larger.

Let us now show that the spatial derivatives of ∇p must approach zero as 1/r2

as r →∞. Differentiating equation (25) with respect to xi (i = 1, 2, 3), we have

∂h

∂xi
=

∂

∂xi

(
∂m1+m2+m3 p

∂m1x1∂m2x2∂m3x3

)
=

∂m1+m2+m3

∂m1x1∂m2x2∂m3x3

(
∂p

∂xi

)
= − 1

4π

∫
R3

xi − x′i
|x− x′|3

∂m1+m2+m3 Q

∂xm1
1 ∂xm2

2 ∂xm3
3

(x′, t) d3x′ (32)

Thus far, we have not made any assumptions about the orientation of the coordinate
axises. Therefore, let us define our coordinate axises such that the point x is on the
positive x3 axis. In this case, the radial direction is along +x3, and we may write

x = r e3 = r er or equivalently x1 = 0, x2 = 0, x3 = r (33)-(35)

where e3 and er are unit vectors in the x3 and radial directions respectively. For
the primed coordinates, we have

x′1 = r′ sin θ′ cosφ′, x′2 = r′ sin θ′ sinφ′, x′3 = r′ cos θ′ (36)-(38)

Inserting equations (33)-(38) into (32) and setting i = 3, we obtain

∂h

∂x3
(x, t) = − 1

4π

∫ ∞
0

∫ π

0

∫ 2π

0

∂m1+m2+m3 Q

∂xm1
1 ∂xm2

2 ∂xm3
3

(r′ sin θ′ cosφ′, r′ sin θ′ sinφ′, r′ cos θ′, t)

× (r − r′ cos θ′) r′
2

sin θ′
[
r2 + r′

2 − 2rr′ cos θ′
]3/2

dφ′dθ′dr′ =
∂h

∂r
(39)

where we have used equations (36)-(38) to express the (Cartesian) components of
x′ in terms of the primed spherical coordinates. We will later show that this radial
component of ∇h is in fact the dominant component in the limit of large values of
|x|. Taking the absolute value of both sides of equation (39) and using the triangle
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inequality gives us∣∣∣∣∂h∂r x, t)
∣∣∣∣ ≤ 1

4π

∫ ∞
0

∫ π

0

∫ 2π

0

∣∣∣∣ ∂m1+m2+m3 Q

∂xm1
1 ∂xm2

2 ∂xm3
3

(r′ sin θ′ cosφ′, r′ sin θ′ sinφ′, r′ cos θ′, t)

∣∣∣∣
×

∣∣∣∣∣ (r − r′ cos θ′)r′
2

sin θ′[
r2 + r′2 − 2rr′ cos θ′

]3/2
∣∣∣∣∣ dφ′dθ′dr′ (40)

Inserting inequality (25) into (40), we then have∣∣∣∣∂h∂r (x, t)

∣∣∣∣ ≤ 1

4π

∫ ∞
0

∫ π

0

∫ 2π

0

a2κB(t)

(r′ + a)2κ

|r − r′ cos θ′| r′2 sin θ′[
r2 + r′2 − 2rr′ cos θ′

]3/2 dφ′dθ′dr′ (41)

Performing the integration with respect to φ′ in this inequality, we obtain∣∣∣∣∂h∂r x, t)
∣∣∣∣ ≤ 1

2
B(t)

∫ ∞
0

∫ π

0

a2κ

(r′ + a)2κ

|r − r′ cos θ′| r′2 sin θ′[
r2 + r′2 − rr′ cos θ′

]3/2 dθ′ dr′ (42)

If we define

L(r) =
1

2

∫ ∞
0

a2κ

(r′ + a)2κ
J(r, r′)dr′ (43)

where

J(r, r′) =

∫ π

0

|r − r′ cos θ′| r′2 sin θ′[
r2 + r′2 − 2rr′ cos θ′

]3/2 dθ′ (44)

Then we may write inequality (42) as∣∣∣∣∂h∂r (x, t)

∣∣∣∣ ≤ B(t)L(r) =
1

2
B(t)

∫ ∞
0

a2κ

(r′ + a)2κ
J(r, r′) dr′ (45)

Let us now evaluate the integral in this equation. We first consider the case of
r′ < r. In this case equation (44) can be written as

J(r, r′) =

∫ 1

−1

r′2(r − r′v)[
r2 + r′2 − 2rr′

]3/2 dv =
r′2

2r

∫ 1

−1

2r2 − 2rr′v[
r2 + r′2 − 2rr′

]3/2 dv (46)

=
r′2

2r

[∫ 1

−1

r2 + r′2 − 2rr′v[
r2 + r′2 − 2rr′

]3/2 dv +

∫ 1

−1

r2 − r′2[
r2 + r′2 − 2rr′

]3/2 dv
]

=
r′2

2r

[∫ 1

−1

[
r2 + r′

2 − 2rr′v
]−1/2

dv +

∫ 1

−1

r2 − r′2[
r2 + r′2 − 2rr′

]3/2 dv
]

=
r′2

2r


−

[
r2 + r′2 − 2rr′v

]1/2
rr′

 |1−1 +

(
r2 − r′2

rr′

[
r2 + r′

2 − 2rr′
]−1/2

)
|1−1


=
r′2

2r

[
2

(
r + r′ − (r − r′)

rr′

)]
= 2

r′2

r2

where we have made the change of variable v′ = cos θ′. For r < r′, the factor
r − r′ cos θ′, whose absolute value appears in equations (41)-(44), is less than zero
for values of v′ = cos θ′ > r/r′. Therefore, we must change the sign of the integrand
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at v′ = r/r′ when evaluating J(r, r′). This function for r < r′ then becomes

J(r, r′) =

∫ r/r′

−1

r′2(r − r′v)[
r2 + r′2 − 2rr′

]3/2 dv − ∫ 1

r/r′

r′2(r − r′v)[
r2 + r′2 − 2rr′

]3/2 dv (47)

=
r′2

2r

 r′2
2r

−
[
r2 + r′2 − 2rr′v

]1/2
rr′

 |r/r′−1 −
(
r2 − r′2

rr′

[
r2 + r′

2 − 2rr′
]−1/2

)
|r/r
′

−1


+
r′2

2r

 r′2
2r


[
r2 + r′2 − 2rr′v

]1/2
rr′

 |1r/r′ +

(
r2 − r′2

rr′

[
r2 + r′

2 − 2rr′
]−1/2

)
|1r/r′


= 2

r′2

r2

(
1−

√
1−

( r
r′

)2
)

Let us check continuity of this function near r = 0 by evaluating

lim
r→0

J(r, r′) = lim
r→0

2
r′

2

r2

(
1−

√
1−

( r
r′

)2
)

= lim
s→1

2
1− s
1− s2

= lim
s→1

2

1 + s
= 1 (48)

where we have made the change of variable

s =

√
1−

( r
r′

)2

Since J(r, r′) has a finite limit as r approaches zero for any value of r′ > r, this
function is continuous and therefore can be integrated with respect to r near r = 0.
From equations (46) and (47), we see that

J(r, r′) ≤ 2
r′

2

r2
(49)

if either r < r′ or r > r′. Inserting inequality (49) into equation (43) we obtain

L(r) ≤ 1

r2

∫ ∞
0

a2κr′2

(r′ + a)2κ
dr′ =

a3

(2κ− 3)(κ− 1)(2κ− 1) r2
(50)

which shows the 1/r2 asymptotic behavior of L(r) in the limit as r → ∞. At
first sight of inequality (50), one might believe that it implies a singularity exists at
r = 0. This “singularity”, however, is merely an artifact of our gross over-estimation
of J(r, r′) near r = 0. As we have already shown, J(r, r′) remains continuous and
integrable near r = 0. Inserting this result into inequality (45) then gives us∣∣∣∣∂h∂r (x, t)

∣∣∣∣ ≤ B(t)L(r) ≤ a3 B(t)

(2κ− 3)(κ− 1)(2κ− 1) r2
(51)

Thus, we see that |∂h/∂r| approaches zero as 1/r2 as r → ∞, and again the left-
hand side of this inequality remains bounded and continuous as r → 0.

From inequality (25), we see that the non-homogeneous term on the right-hand
side of equation (21) approaches zero as 1/r2κ as r increases. According to in-
equality (31), however, h approaches zero as 1/r as r → ∞. Therefore, the non-
homogeneous term in equation (21) can in general be made arbitrarily small com-
pared with the function h and its derivatives by choosing r sufficiently large. This
implies that h must approach a harmonic function (ie. solution of Laplace’s equa-
tion ∇2h = 0) in the limit as r → ∞. Let hL be the (harmonic) function that
describes the asymptotic behavior of h as r → ∞. That is hL is the function to
which h approaches as r increases. Since hL is a harmonic function that approaches
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zero as r →∞, it can be written as

hL(r, θ, φ) =

∞∑
l=0

l∑
m=−l

Dlmr
−(l+1)Ylm(θ, φ) (52)

where the Dlm are constants and the Ylm are the spherical harmonics. Taking the
gradient of both sides of this equation, we have

∇hL =

∞∑
l=0

l∑
m=−l

Dlmr
−(l+2)

[
− (l + 1)Ylm(θ, φ) er +

∂Ylm

∂θ
(θ, φ) eθ +

1

sin θ

∂Ylm

∂φ
(θ, φ) eφ

]
(53)

Examining equations (52) and (53), we see that the dominate terms (at large values
of r) in hL and ∇hL are those with l = m = 0. Therefore, the asymptotic behavior
of h and ∇h can be expressed as

h → − D00√
4πr

and ∇h → − D00√
4πr2

er (54),(55)

in the limit as r → ∞, with a properly chosen constant D00.2 Also, note that equations
(54) and (55) are consistent with inequalities (31) and (51) respectively for large values of
r.

From equation (55), we see that in the limit as r = |x| → ∞, ∇h approaches a vector
function with only a radial component. This implies that there must be a value r1 such
that for r > r1, we have

|∇h · eθ| < |∇h · er|, and |∇h · eφ| < |∇h · er| (56),(57)

where eθ and eφ are unit vectors in the polar and azimuthal directions respectively.
Therefore ∇h · er, ∇h · eθ, and ∇h · eφ are the components of ∇h in the radial,
polar, and azimuthal directions respectively. The absolute value of ∇h is given by

|∇h| =
√

(∇h · er)2 + (∇h · eθ)2 + (∇h · eφ)2 (58)

Inserting (56) and (57) into (58), we have

|∇h| =
√

(∇h · er)2 + (∇h · er)2 + (∇h · er)2 ≤
√

3 (∇h · er)2 (59)

=
√

3 |∇h · er| =
√

3

∣∣∣∣∂h∂r
∣∣∣∣

for r > r1. Let us define r0 = max[r1, a]. We then have from inequality (50)

L(r) ≤ a3

3r2
=

4a3

3(2r)2
≤ 4a3

3(r + r0)2
≤ 4a3

3(r + a)2
if r > r0 (60)

If r < r0, we define Lmax as the maximum of L over the radial interval 0 ≤ r ≤ r0.
Then we may write

L(r)(r + r0)2 ≤ 4Lmaxr
2
0 which implies L(r) ≤ 4Lmaxr

2
0

(r + r0)2
≤ 4Lmaxr

2
0

(r + a)2
(61)

for r < r0. Combining our results from inequalities (60) and (61), we have

L(r) ≤ a2

(r + a)2
A[L] (62)

where we have defined

A[L](m1,m2,m3) = 4 max

[
Lmax

r2
0

a2
,
a

3

]
(63)

2This result is analogous to the dominance of the monopole term in the far-field (ie. large values

of |x|) in an electrostatics problem (See Ref. 5, Chapter 4). In such a problem, h corresponds to
the electrostatic potential, ∇h corresponds to the electric field, and the right-hand side of equation
(21) corresponds to the charge density.
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and m1, m2, and m3 are the positive integers chosen for equation (20). Multiplying

both sides of inequality (51) by
√

3 and using (59) then gives us

|∇h| ≤
√

3a2

(r + a)2
A[L](m1,m2,m3)B(t) =

√
3a2

(|x|+ a)2
A[L](m1,m2,m3)B(t) (64)

Since |∂h/∂xi| ≤ |∇h| for i = 1, 2, 3, this inequality along with equation (20) imply
that ∣∣∣∣ ∂m1+m2+m3+1 p

∂xm1
1 ∂xm2

2 ∂xm3
3 ∂xi

(x, tn)

∣∣∣∣ ≤ a2

(|x|+ a)2
A

[
∂m1+m2+m3+1 p

∂xm1
1 ∂xm2

2 ∂xm3
3 ∂xi

]
(t) (65)

≤ aκ

(|x|+ a)κ
A

[
∂m1+m2+m3+1 p

∂xm1
1 ∂xm2

2 ∂xm3
3 ∂xi

]
(t)

where we have defined

A

[
∂m1+m2+m3+1 p

∂xm1
1 ∂xm2

2 ∂xm3
3 ∂xi

(x, t)

]
=
√

3A[L](m1,m2,m3)B(t) (66)

and B(t) is given in equation (26). From this inequality and equation (26), we see
that |∇h| → 0 as 1/(|x|+ a)2 in the limit as |x| → ∞ provided the absolute value
of the spatial derivatives (to all orders) do so also. Hence, the components of ∇p
and their spatial derivatives to all order satisfy the required boundary conditions.

Spatial Dependence of Solution. Before establishing existence of a solution of
the given problem, let us consider the maximum velocity spatial profiles we would
expect such a solution to have. We start by defining a grid G on a finite time
interval 0 ≤ t ≤ T which consists of N time values tn such that

0 = t0 < t1 < t2 < · · · < tN = T (67)

where N is a positive integer and T is the arbitrarily chosen length of the solution
interval. Let us now define a finite difference approximation u(G) of the solution u
to equation (4). First, we initialize u(G)(x, 0) to u0(x), where u0(x) is the initial
profile of the solution u(x, t) given in equation (5). Therefore we write

u(G)(x, 0) = u0(x) or equivalently u
(G)
i (x, 0) = u0

i (x) (68)

Next, we define the function u(G) at the chosen time grid values tn for n ≥ 1
according to the recursion relation

u
(G)
i (x, tn+1) =

[
ν∇2u

(G)
i (x, tn) −

3∑
k=1

u
(G)
k (x, tn)

∂u
(G)
i

∂xk
(x, tn)−

∂p(G)

∂xi
(x, tn)

]
∆tn

+ u
(G)
i (x, tn) (69)

where
∆tn = tn+1 − tn (70)

For values of t between tn and tn+1, we define the linear interpolation in time

u(G)(x, t) =
[
u(G)(x, tn+1) − u(G)(x, tn)

] t− tn
∆tn

+ u(G)(x, tn) (71)

Since equations (67)-(71) define a finite difference approximation to the solution of
equation (4), we expect the approximation u(G) to converge to the solution u in
the limit as all of the ∆tn approach zero, provided that u remains defined on the
interval 0 ≤ t ≤ T . Although these equations precisely define u(G) for any time
grid G, we have not yet shown that u(G) is bounded on the given time interval in
the limit as the ∆tn approach zero. To prove existence, we must show that the
function u defined as

u(x, t) = lim
∆tmax→0

u(G)(x, t) (72)
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(where ∆tmax is the largest value of ∆tn) does in fact remain bounded on 0 ≤ t ≤ T .
In this section, however, we are only considering the spatial dependence of the
solution assuming it does exist.

At this point, we show by induction that inequality (19) must be true for all
values of tn since, by hypothesis, it is true initially (ie. for t0 = 0). Assuming this
inequality is true for some grid time tn, we write∣∣∣∣ ∂m1+m2+m3ui

∂xm1
1 ∂xm2

2 ∂xm3
3

(x, tn)

∣∣∣∣ ≤ aκ

(|x|+ a)κ
A

[
∂m1+m2+m3ui
∂xm1

1 ∂xm2
2 ∂xm3

3

]
(tn) (73)

Differentiating equation (69) m1 times with respect to x1, m2 times with respect
to x2, and m3 times with respect to x3 gives us

∂m1+m2+m3 u
(G)
i

∂x1
m1∂x2

m2∂x3
m3

(x, tn+1) =

[
ν

3∑
k=1

∂m1+m2+m3+2u
(G)
i (x, tn)

∂x1
m1∂x2

m2∂x3
m3∂xk2

−
∂m1+m2+m3+1p(G)

∂x
m1
1 ∂x

m2
2 ∂x

m3
3 ∂xi

(x, tn)

−
3∑
k=1

m1∑
α=0

m2∑
β=0

m3∑
γ=0

(
m1

α

)(
m2

β

)(
m3

γ

)
∂m1+m2+m3−α−β−γu

(G)
k (x, tn)

∂x1
m1−α ∂x2

m2−β ∂x3
m3−γ

∂α+β+γ+1u
(G)
i (x, tn)

∂x1
α ∂x2

β ∂x3
γ ∂xk

∆tn

+
∂m1+m2+m3 u

(G)
i

∂x1
m1∂x2

m2∂x3
m3

(x, tn) (74)

where again we have used the Leibnitz rule for finding higher derivatives of product
functions. As before, the quantities in parentheses to the right of the summation
signs are binomial coefficients. Taking the absolute value of both sides of equation
(74) and using the triangle inequality, we have∣∣∣∣∣ ∂m1+m2+m3 u

(G)
i

∂x1
m1∂x2

m2∂x3
m3

(x, tn+1)

∣∣∣∣∣ ≤
 3∑
k=1

m1∑
α=0

m2∑
β=0

m3∑
γ=0

(
m1

α

)(
m2

β

)(
m3

γ

)

×

∣∣∣∣∣∂m1+m2+m3−α−β−γu
(G)
k (x, tn)

∂x1
m1−α ∂x2

m2−β ∂x3
m3−γ

∣∣∣∣∣
∣∣∣∣∣∂α+β+γ+1u

(G)
i (x, tn)

∂x1
α ∂x2

β ∂x3
γ ∂xk

∣∣∣∣∣ (75)

+ ν
3∑
k=1

∣∣∣∣∣∂m1+m2+m3+2u
(G)
i (x, tn)

∂x1
m1∂x2

m2∂x3
m3∂x2

k

∣∣∣∣∣ +
3∑
k=1

∣∣∣∣∣∂m1+m2+m3+1p(G)(x, tn)

∂x1
m1∂x2

m2∂x3
m3∂xi

∣∣∣∣∣
∆tn

+

∣∣∣∣∣∂m1+m2+m3u
(G)
i (x, tn)

∂x1
m1∂x2

m2∂x3
m3

∣∣∣∣∣
Inserting inequalities (65) and (73) into (75), we obtain

∣∣∣∣∣ ∂m1+m2+m3 u
(G)
i

∂x1
m1∂x2

m2∂x3
m3

(x, tn+1)

∣∣∣∣∣ ≤
 3∑

k=1

m1∑
α=0

m2∑
β=0

m3∑
γ=0

(
m1

α

)(
m2

β

)(
m3

γ

)
(76)

×
a2κ

(|x|+ a)2κ
A

[
∂m1+m2+m3−α−β−γ uk

∂x1
m1−α ∂x2

m2−β ∂x3
m3−γ

]
(tn) A

[
∂α+β+γ+1 ui

∂x1
α ∂x2

β ∂x3
γ ∂xk

]
(tn)

+
aκ

(|x|+ a)κ
ν

3∑
k=1

A

[
∂m1+m2+m3+2 ui

∂x1
m1∂x2

m2∂x3
m3∂x2

k

]
(tn) + A

[
∂m1+m2+m3+1 p

∂x1
m1∂x2

m2∂x3
m3∂xi

]
(tn)

 ∆tn

+
aκ

(|x|+ a)κ
A

[
∂m1+m2+m3 ui

∂x1
m1∂x2

m2∂x3
m3

]
(tn)

Factoring aκ/(|x|+ a)κ from the right-hand side of this inequality, we have∣∣∣∣∣ ∂m1+m2+m3 u
(G)
i

∂x1
m1∂x2

m2∂x3
m3

(x, tn+1)

∣∣∣∣∣ ≤ aκ

(|x|+ a)κ
A

[
∂m1+m2+m3 ui
∂x1

m1∂x2
m2∂x3

m3

]
(tn+1) (77)
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where we have defined

A

[
∂m1+m2+m3 ui

∂x1
m1∂x2

m2∂x3
m3

(tn+1)

]
=

3∑
k=1

m1∑
α=0

m2∑
β=0

m3∑
γ=0

(
m1

α

)(
m2

β

)(
m3

γ

)
(78)

× A
[

∂m1+m2+m3−α−β−γ uk

∂x1
m1−α ∂x2

m2−β ∂x3
m3−γ

]
(tn) A

[
∂α+β+γ+1 ui

∂x1
α ∂x2

β ∂x3
γ ∂xk

]
(tn) ∆tn

+ ν
3∑
k=1

A

[
∂m1+m2+m3+2 ui

∂x1
m1∂x2

m2∂x3
m3∂x2

k

]
(tn) ∆tn + A

[
∂m1+m2+m3+1 p

∂x1
m1∂x2

m2∂x3
m3∂xi

]
(tn) ∆tn

+ A

[
∂m1+m2+m3 ui

∂x1
m1∂x2

m2∂x3
m3

]
(tn)

and have used the fact that

a2κ

(|x|+ a)2κ
≤ aκ

(|x|+ a)κ
≤ 1

Inequality (77), however, is merely inequality (73) with n replaced by n+ 1. Since
inequality (6) implies that (73) is true for n = 0, we have shown inductively that
for all n, there exists time-dependent coefficients A[](tn) such that (73) is true.

Since these spatial dependencies of the u
(G)
i must hold for any positive integer N ,

inequality (73) becomes∣∣∣∣ ∂m1+m2+m3ui
∂xm1

1 ∂xm2
2 ∂xm3

3

(x, t)

∣∣∣∣ ≤ aκ

(|x|+ a)κ
A

[
∂m1+m2+m3ui
∂xm1

1 ∂xm2
2 ∂xm3

3

]
(t) (79)

in the limit as ∆tmax → 0. The solution u as defined in equation (72) must be
consistent with this inequality.

Existence of Pressure Gradient Integral over Time. As indicated in the
previous section, equations (67)-(71) define a finite difference approximation to the
solution u. This solution will exist if we can show that the u(G) remain bounded
in the limit as the time step sizes approach zero. We must first, however, establish
that the time integral of the scalar pressure gradient ∇p exists and remains finite
over any finite time interval. We start with the original Navier-Stokes equation.

∂ui
∂t

= ν∇2ui −
3∑
k=1

uk
∂ui
∂xk

− ∂p

∂xi
(4b)

Multiplying both sides of this equation by ui and summing over i, we obtain

3∑
i=1

ui
∂ui
∂t

= ν

3∑
i=1

ui∇2ui −
3∑
i=1

3∑
k=1

uiuk
∂ui
∂xk

−
3∑
i=1

ui
∂p

∂xi
(80)

Since
∂

∂t

(
1

2
u2
i

)
= ui

∂ui
∂t

Equation (80) can be written as

3∑
i=1

∂

∂t

(
1

2
u2
i

)
= ν

3∑
i=1

ui∇2ui −
3∑
i=1

3∑
k=1

uk
∂

∂xk

(
1

2
u2
i

)
−

3∑
i=1

ui
∂p

∂xi
(81)

From elementary vector analysis, we have

∇ · (ui∇ui) = ui∇ · (∇ui) + ∇ui · ∇ui = ui∇2ui + ∇ui · ∇ui
and therefore

ui∇2ui = ∇ · (ui∇ui) − ∇ui · ∇ui = ∇2

(
1

2
u2
i

)
− ∇ui · ∇ui (82)
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Inserting this result into equation (81), we obtain
3∑
i=1

∂

∂t

(
1

2
u2
i

)
= ν

3∑
i=1

∇2

(
1

2
u2
i

)
− ν

3∑
i=1

∇ui · ∇ui −
3∑
i=1

3∑
k=1

uk
∂

∂xk

(
1

2
u2
i

)
−

3∑
i=1

ui
∂p

∂xi

(83)

If we define the energy density of fluid motion K as

K(x, t) =
1

2

3∑
i=1

(ui(x, t))
2 =

1

2
u(x, t) · u(x, t) (84)

equation (83) can be written as

∂K

∂t
= ν∇2K − ν

3∑
i=1

∇ui · ∇ui −
3∑
i=1

ui
∂K

∂xi
−

3∑
i=1

ui
∂p

∂xi

or equivalently

∂K

∂t
= ν∇2K − ν

3∑
i=1

∇ui · ∇ui − u · ∇K − u · ∇p (85)

= ν∇ · (∇K)− ν
3∑
i=1

(∇ui · ∇ui)−∇ · [(K + p)u]

where we have used the fact that ∇ · u = 0 in the last step. Let us now define the
total energy of fluid motion as

E(t) =

∫
R3

K(x, t) d3x (86)

The initial value E0 of this function was shown to be finite in equation (7). Let us
examine the evolution of the function E(t). Integrating equation (85) over R3 and
using (86) gives us

dE

dt
= ν

∫
R3
∇ · (∇K) d3x − ν

3∑
i=1

∫
R3

(∇ui · ∇ui) d3x −
∫
R3
∇ · [(p +K)u)] d3x (87)

We now show that the first and third terms on the right-hand side of equation (87)
vanish. Integrating equation (86) over the spherical region in R3 defined by |x| ≤ R
we have

∂

∂t

∫
|x|≤R

K(x, t) d3x = ν

∫
|x|≤R

∇ · (∇K) d3x − ν

3∑
i=1

∫
|x|≤R

(∇ui · ∇ui) d3x

−
∫
|x|≤R

∇ · [(p +K)u] d3x (88)

Applying the divergence theorem to the first and third terms on the right-hand side
of equation (88), we have

∂

∂t

∫
|x|≤R

K(x, t) d3x = ν

∫
|x|=R

∇K · er dS − ν

3∑
i=1

∫
|x|≤R

(∇ui · ∇ui) d3x

−
∫
|x|=R

(p +K)u · er dS (89)

where er is the unit vector in the radial direction. Differentiating both sides of
equation (84) with respect to xj gives us

∂K

∂xj
(x, t) =

3∑
i=1

ui(x, t)
∂ui
∂xj

(x, t) (90)
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Since the function u as defined in equation (72) must be consistent with inequality
(79), we take the absolute value of both sides of equation (90) and use inequality
(79) along with the triangle inequality to obtain∣∣∣∣ ∂K∂xj (x, t)

∣∣∣∣ ≤ 3∑
i=1

|ui(x, t)|
∣∣∣∣ ∂ui∂xj

(x, t)

∣∣∣∣ ≤ a2κ

(|x|+ a)2κ

3∑
i=1

A [ui] (t) A

[
∂ui
∂xj

]
(t) (91)

From this inequality, we have

|∇K(x, t)| ≤
3∑
i=1

∣∣∣∣∂K∂xi (x, t)
∣∣∣∣ ≤ 3∑

i=1

3∑
j=1

|ui(x, t)|
∣∣∣∣ ∂ui∂xj

(x, t)

∣∣∣∣ (92)

≤ a2κ

(|x|+ a)2κ

3∑
i=1

3∑
j=1

A [ui] (t) A

[
∂ui
∂xj

]
(t)

Applying inequality (92) to the first integral on the right-hand side of equation (89)
gives us∣∣∣∣∣

∫
|x|=R

∇K · er dS

∣∣∣∣∣ ≤
3∑
i=1

3∑
j=1

A [ui] (t) A

[
∂ui
∂xj

]
(t)

∫
|x|=R

a2κ

(|x|+ a)2κ
dS (93)

=
4πR2a2κ

(R+ a)2κ

3∑
i=1

3∑
j=1

A [ui] (t) A

[
∂ui
∂xj

]
(t)

Taking the limit of both sides of this inequality as R→∞, we obtain

lim
R→∞

∫
|x|=R

∇K · er dS = 0 (94)

From the last term on the right-hand side of equation (89), we have∣∣∣∣∣
∫
|x|=R

(p +K)u · er dS

∣∣∣∣∣ ≤
∫
|x|=R

|p +K||u| dS (95)

≤
∫
|x|=R

(
|p|(R) +K(R)

) aκA [|u|]
(R+ a)κ

dS

= 4πR2
(
|p|(R) +K(R)

) aκA [|u|]
(R+ a)κ

= 4πR2 |p|(R)
aκA [|u|]
(R+ a)κ

+ 4πR2 K(R)
aκA [|u|]
(R+ a)κ

where we have defined |p|(R) and K(R) as the average values of |p| and K respec-
tively for |x| = R. Also, we have defined the fluid velocity magnitude coefficient
A[|u|](t) as

A[|u|](t) =

√√√√ 3∑
k=1

A2[uk](t) so that |u(x, t)| ≤ aκ

(|x|+ a)κ
A [|u|] (96)

where the A[ui](t) are from equation (17). In the right-hand side of inequality (95),
the scalar pressure p approaches zero as 1/R as R → ∞, and the kinetic energy
density K approaches zero as 1/R2κ as R → ∞. Therefore, the first term of the
right-hand side of this inequality approaches zero as 1/Rκ−1 as R → ∞, and the
second term approaches zero as 1/R3κ−2 as R → ∞. Since κ > 3/2, it follows
then that both terms on the right-hand side of inequality (95) vanish as R → ∞.
Therefore, we have

lim
R→∞

∫
|x|=R

(p +K)u · er dS = 0 (97)
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Now we take the limit as R →∞ of both sides of equation (89), and use (94) and
(97) to obtain

dE

dt
= −ν

3∑
i=1

∫
R3

(∇ui · ∇ui) d3x = −ν
3∑
i=1

3∑
j=1

∫
R3

(
∂ui
∂xj

(x, t)

)2

d3x (98)

Integrating equation (98) with respect to time gives us

E(t) = E0 − ν

3∑
i=1

3∑
j=1

∫ t

0

∫
R3

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ ≤ E0 (99)

Since E(t) is bounded below by zero, the summation of the integrals in equation
(99) must be finite, and since each these of these integrals is positive, they must all
be finite. Therefore, we may write∫ t

0

∫
R3

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ = Wij(t) (100)

where each of the Wij(t) functions are finite for all t > 0.
Let us now establish a connection between the Wij(t) functions and the time

integral of the scalar pressure gradient. We first note that since the integrands
in equations (99) and (100) are everywhere greater than or equal to zero, we may
write∫ t

0

∫
S3(t′)

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ ≤
∫ t

0

∫
R3

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ = Wij(t) (101)

where S3(t) can be any subset of R3 which may change with time. Let us now show
that ∫ t

0

∫
R3

∣∣∣∣ ∂ui∂xj
(x, t′)

∂uj
∂xi

(x, t′)

∣∣∣∣ d3x dt′ ≤ Wij(t) + Wji(t) i, j = 1, 2, 3 (102)

for all t > 0. We first define S3
ij(t) as the subset of S3 (at time t) where the time

integral of |∂ui/∂xj | is greater than or equal to the time integral of |∂uj/∂xi|. We
may then write∫ t

0

∫
R3

∣∣∣∣ ∂ui∂xj
(x, t′)

∣∣∣∣ ∣∣∣∣∂uj∂xi
(x, t′)

∣∣∣∣ d3x dt′ ≤
∫ t

0

∫
S3
ij(t
′)

(
∂ui

∂xj
(x, t′)

)2

d3x dt′ (103)

+

∫ t

0

∫
R3−S3

ij(t
′)

(
∂uj

∂xi
(x, t′)

)2

d3x dt′

Since both integrands on the right-hand side of inequality (102) are positive and
the subsets S3

ij(t) and R3 − S3
ij(t) are both contained within R3 for any time t, we

have ∫ t

0

∫
S3
ij(t
′)

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ ≤
∫ t

0

∫
R3

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ (104)

and ∫ t

0

∫
R3−S3

ij(t
′)

(
∂uj
∂xi

(x, t′)

)2

d3x dt′ ≤
∫ t

0

∫
R3

(
∂uj
∂xi

(x, t′)

)2

d3x dt′ (105)

Inserting these into inequality (103) then gives us∫ t

0

∫
R3

∣∣∣∣ ∂ui∂xj
(x, t′)

∂uj
∂xi

(x, t′)

∣∣∣∣ d3x dt′ ≤
∫ t

0

∫
R3

(
∂ui
∂xj

(x, t′)

)2

d3x dt′ (106)

+

∫ t

0

∫
R3

(
∂uj
∂xi

(x, t′)

)2

d3x dt′
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From the definition of the Wij(t) functions in equation (100), inequality (106) can
be written as∫ t

0

∫
R3

∣∣∣∣ ∂ui∂xj
(x, t′)

∂uj
∂xi

(x, t′)

∣∣∣∣ d3x dt′ ≤ Wij(R3, t) + Wji(R3, t) (102)

thereby proving inequality (102). Applying the triangle inequality to equation (13),
we have

|Q(x, t)| ≤
3∑
i=1

3∑
j=1

∣∣∣∣ ∂ui∂xj
(x, t)

∂uj
∂xi

(x, t)

∣∣∣∣ (107)

Integrating this inequality over R3 and t > 0, and using inequality (102) then gives
us ∫ t

0

∫
R3

|Q(x, t′)| d3x dt′ ≤
3∑
i=1

3∑
j=1

∫ t

0

∫
R3

∣∣∣∣ ∂ui∂xj
(x, t′)

∂uj
∂xi

(x, t′)

∣∣∣∣ d3x dt′ (108)

≤
3∑
i=1

3∑
j=1

[Wij(t) + Wji(t)] = 2

3∑
i=1

3∑
j=1

Wij(t)

Therefore, since each of the Wij(t) on the right-hand side if inequality (108) is
finite, the integral of |Q(x, t)| over any time interval and any subset of R3 must
also be finite. At this point, we show that this result implies that the time integral
of |∇p| must be finite for all x ∈ R3 and t > 0. Applying the triangle inequality to
equation (16), we have

|∇p(x, t)| ≤ 1

4π

∫
R3

|Q(x′, t) | |x− x′|
|x− x′|3

d3x′ =
1

4π

∫
R3

|Q(x′, t)|
|x− x′|2

d3x′ (109)

Integrating both sides of this inequality with respect time gives us∫ t

0

∣∣∇p(x, t′)∣∣ dt′ ≤ 1

4π

∫ t

0

∫
R3

|Q(x′, t′)|
|x− x′|2

d3x′ dt′ =
1

4π

∫
R3

∫ t

0

|Q(x′, t′)|
|x− x′|2

dt′ d3x′

(110)
where we have reversed the order of integration over space and time. This is valid
since the solution u(x, t) and its spatial derivatives are smooth prior to any blowup.
From inequality 110, we then have∫ t

0

|∇p(x, t)| dt′ ≤ 1

4π

∫
R3

1

|x− x′|2
∫ t

0

|Q(x′, t′)| dt′ d3x′ =
1

4π

∫
R3

q(x′, t)

|x− x′|2
d3x′

(111)
where we have defined

q(x, t) =

∫ t

0

∣∣Q(x, t′)
∣∣ dt′ (112)

To obtain an upper bound on the time integral of |∇p(x, t)|, we first choose any
finite number R and split the integral in inequality (111) into two integrals as
follows∫

R3

q(x′, t)

|x− x′|2
d3x′ =

∫
|x−x′|>R

q(x′, t)

|x− x′|2
d3x′ +

∫
|x−x′|≤R

q(x′, t)

|x− x′|2
d3x′ (113)

From the first integral on the right-hand side of this equation, we have∫
|x−x′|>R

q(x′, t)

|x− x′|2
d3x′ <

∫
|x−x′|>R

q(x′, t)

R2
d3x′ <

1

R2

∫
R3

q(x′, t) d3x′ (114)

since R < |x − x′| and the integration region described by {x′| |x− x′| > R} is
a subset of R3. Therefore, according to inequality (114), the first integral on the
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right-hand side of inequality (113) is finite. Hence, we have∫
|x−x′|>R

q(x′, t)

|x− x′|2
d3x′ <

1

R2

∫
R3

q(x′, t) d3x′ < ∞ (115)

Now let us consider the second integral on the right-hand side of equation (113).
We note that this is an improper integral since the integration region contains the
|x−x′| = 0 singularity. Therefore, we must evaluate this integral by excluding from
the integration region a small sphere of radius ε centered at the singularity (ie. the
point x), doing the integral which now excludes the singularity, and then taking
the limit as ε→ 0. The basic approach we use is to first define a set of concentric
spheres σ0, σ1, σ2, ..., σN with radii ε = r0 < r1 < r2 < ... < rN = R respectively.
We then define a set of N spherical shells S3

1 , S
3
2 , S

3
3 , ..., S

3
N as the regions between

two successive S spheres. That is,

S3
1 = Set of all points x′ such that r0 ≤ |x− x′| ≤ r1

S3
2 = Set of all points x′ such that r1 ≤ |x− x′| ≤ r2

S3
3 = Set of all points x′ such that r2 ≤ |x− x′| ≤ r3

...

S3
N = Set of all points x′ such that rN−1 ≤ |x− x′| ≤ rN

Also, we make the following definitions:

Vn =
4

3
π
(
r3
n − r3

n−1

)
= Volume of spherical shell S3

n (n = 1, 2, 3, ... , N)

∆rn = rn − rn−1 = Thickness of spherical shell S3
n (n = 1, 2, 3, ... , N)

qn(t) =
1

Vn

∫
S3
n

q(x′, t) d3x′ = Mean value of q(x′, t) over S3
n (n = 1, 2, 3, ... , N)

∆rmax = max [∆rn where n = 1, 2, 3, ... , N ]

Note that the qn(t) are all finite since Vn along with the integral of q(x, t) over
any subset of R3 are both finite. With these definitions, the second integral on the
right-hand side of equation (113) can be written as∫

ε≤|x−x′|≤R

q(x′, t)

|x− x′|2
d3x′ =

N∑
n=1

∫
S3
n

q(x′, t)

|x− x′|2
d3x′ (116)

In each of the integrals on the right-hand side of this equation, the minimum value
of |x− x′| is rn−1. Therefore, we may write∫

S3
n

q(x′, t)

|x− x′|2
d3x′ ≤

∫
S3
n

q(x′, t)

r2
n−1

d3x′ =
qnVn
r2
n−1

(117)

Next, we note that the volume Vn of S3
n must be less than the product of the surface

area of the outer sphere σ3 and the thickness ∆rn. That is

Vn < 4πr2
n ∆rn

Inserting this inequality into (117), we have∫
S3
n

q(x′, t)

|x− x′|2
d3x′ ≤ qnVn

r2
n−1

< 4π qn(t)

(
rn
rn−1

)2

∆rn (118)

Inserting this result into equation (116) then gives us∫
ε≤|x−x′|≤R

q(x′, t)

|x− x′|2
d3x′ <

N∑
n=1

4π qn(t)

(
rn
rn−1

)2

∆rn (119)
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Note that the sum on the right-hand side of this equation is finite since each of
the qn(t) is also finite. Since inequality (119) holds for all sets {rn} such that
ε = r0 < r1 < r2 < ... < rN = R, it must also be true that in the limit as
∆rmax → 0 and N →∞, this sum must also be finite and we have∫

ε≤|x−x′|≤R

q(x′, t)

|x− x′|2
d3x′ ≤

N∑
n=1

4π qn(t) ∆rn (120)

where we have used the fact that the ratio rn/rn−1 approaches unity in the limit
as ∆rmax → 0 and N → ∞. Also, the set of qn(t) becomes a continuum function
q(r, t) and the discrete sum becomes an integral. Therefore, we write∫

ε≤|x−x′|≤R

q(x′, t)

|x− x′|2
d3x′ ≤ 4π

∫ R

ε

q(r, t) dr

Finally, since q(r, t) is finite at R = 0, the limit as ε → 0 of the right-hand side of
this inequality exists and is finite. Therefore, we have∫

ε≤|x−x′|≤R

q(x′, t)

|x− x′|2
d3x′ ≤ 4π

∫ R

0

q(r, t) dr (121)

which is also finite. Inserting inequalities (113) and (121) into (111) gives us∫ t

0

|∇p(x, t)| dt′ ≤ 1

4π

∫
|x−x′|>R

q(x′, t)

|x− x′|2
d3x +

∫ R

0

q(r, t) dr (122)

Since both terms on the right-hand side of this inequality have been shown to be
finite, we have shown that the time integral of |∇p(x, t)| is finite for all x and t.
This is a critical step toward establishing existence and smoothness of u(x, t) over
time.

Existence and Smoothness of Solution over Time. At this point, we show
that a solution u(x, t) which is initially smooth (ie. satisfies the boundary condition
that u(x, 0) and its spatial derivatives to all order approach zero as 1/(|x|+ a)κ as
|x| → ∞) will in fact remain smooth and finite for all t > 0. From equation (84),
we see that u(x, t) will remain finite if and only if K(x, t) does so also. Therefore,
let us show that K is in fact defined over all x ∈ R3 and t > 0. We first define
x∗(t) as the position of the spatial maximum of K at time t, and K∗(t) as the value
of this maximum. These values must, of course, exist initially since u(x, 0) and
K(x, 0) are smooth by hypothesis. Since K is initially smooth, it will remain so
unless a global maximum becomes infinite.3 Let us determine how K∗(t) evolves in
time for a spatially smooth K(x, t). Since, by hypothesis, a maximum of K occurs
at x∗ and K is still smooth, we must have

∇K(x∗(t), t) = 0 and
∂2K

∂x2
i

(x∗(t), t) ≤ 0 (i = 1, 2, 3) (123),(124)

where inequality (124) arises from the second derivative test for spatial maxima.
Since the second partial derivatives of K are negative or zero at a spatial maximum,
it follows that their sum must also be negative or zero. Therefore, we have

∇2K(x∗(t), t) =

3∑
i=1

∂2K

∂x2
i

(x∗(t), t) ≤ 0 (125)

3Recall that in the section titled Spatial Dependence of Solution, it was shown that an initially
smooth solution would remain smooth for as long as it’s defined.
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Inserting x∗ into equation (85) then gives us

∂K

∂t
(x∗(t), t) = ν∇2K(x∗(t), t) − ν

3∑
i=1

∇ui(x∗(t), t) · ∇ui(x∗(t), t) (126)

− u(x∗(t), t) · ∇p(x∗(t), t)

From inequality (125) and the fact that ∇ui · ∇ui ≥ 0, equation (126) implies that

∂K

∂t
(x∗(t), t) ≤ |−u(x∗(t), t) · ∇p(x∗(t), t)| ≤ |u(x∗(t), t)| |∇p(x∗(t), t)| (127)

The left-hand side of this inequality is the rate of increase of K at the point where
its global maximum K∗ occurs. Therefore the rate of increase in the single-variable
function K∗(t) must also equal this quantity. Therefore, from inequality (127), we
have

dK∗

dt
(t) ≤

√
2 |∇p(x∗(t), t)|

√
K∗ (128)

At this point, we define K∗1 (t) as the maximum K∗(t) function allowed by inequality
(128). That is

dK∗1
dt

=
√

2 |∇p(x∗(t), t)|
√
K∗1 (129)

Solving this ordinary differential equation by dividing both sides by
√
K∗1 and

integrating with respect to t, we have

K∗1 (t) =
1

2

(∫ t

0

∣∣∇p(x∗(t′), t′)∣∣ dt′ +
√

2K∗0

)2

(130)

where K∗0 is the initial value of K∗. Now, in order for a “smooth blowup” to occur,
there must be a maximum point xb of K formed that reaches infinite values as t
approaches a blowup time tb. From equation (130), we see that we must have∫ t

0

|∇p(xb, t′)| dt′ →∞ (131)

in order for K∗1 , and therefore K, to reach infinite values at xb. According to
inequality (122), however, this integral is finite for all x ∈ R3 and t > 0. Therefore,
a smooth blowup of K is not possible. Hence, the solutions for the fluid velocity
u(x, t) and the scalar pressure function p(x, t) exist and are bounded and smooth
for all t > 0. Furthermore, equation (98) implies that the total energy of fluid
motion E decreases monotonically to zero. Then, since the solution u has been
shown to be smooth, it follows that u(x, t)→ 0 as t→∞ for all x ∈ R3.

Uniqueness of Solution. Let us now show that the solution of the given problem
is in fact unique. We start by defining u(1)(x, t) and u(2)(x, t) along with the corre-
sponding scalar pressure functions p(1)(x, t) and p(2)(x, t) as two possible solutions
of equation (4) with initial condition (5) and zero-divergence constraint (9). We
therefore write

∂u(1)

∂t
= ν∇2u(1) − (u(1) · ∇)u(1) −∇p(1) (132)

and
∂u(2)

∂t
= ν∇2u(2) − (u(2) · ∇)u(2) −∇p(2) (133)

Subtracting equation (132) from (133), we have

∂D

∂t
= ν∇2D− (u(2) · ∇)D− (D · ∇)u(1) +∇p(1) −∇p(2) (134)



20 DWIGHT M. WALSH

where we have defined

D(x, t) = u(2)(x, t)− u(1)(x, t) (135)

as the difference between the two solutions. Taking the scalar product of both sides
of equation (134) with D, we have

D · ∂D
∂t

= νD · ∇2D−D ·
[
(u(2) · ∇)D

]
−D ·

[
(D · ∇)u(1)

]
+ D · ∇p(1) −D · ∇p(2)

= ν

3∑
i=1

Di∇2Di −
3∑
i=1

3∑
k=1

Diu
(1)
k

∂Di
∂xk

−
3∑
i=1

3∑
k=1

DiDk
∂u

(1)
i

∂xk
−D · (∇p(2) −∇p(1))

= ν

3∑
i=1

∇ · (Di∇Di)− ν
3∑
i=1

(∇Di) · (∇Di)− u(1) · ∇
(

1

2
D ·D

)
(136)

−D ·
[
(D · ∇)u(1)

]
−D · (∇p(2) −∇p(1))

= ν

3∑
i=1

∇ · (Di∇Di)− ν
3∑
i=1

(∇Di) · (∇Di) +∇ ·
(

1

2
D ·D

)
+

1

2
(D ·D)∇ · u(1)

−D ·
[
(D · ∇)u(1)

]
−∇ ·

[
(p(2) − p(1))D

]
+ (p(2) − p(1))∇ ·D

Since ∇ · u(1) = 0 and ∇ ·D = 0, the fourth and seventh terms on the right-hand
side of this equation vanish, and we write

∂WD

∂t
= ν

3∑
i=1

∇ · (Di∇Di)− ν
3∑
i=1

(∇Di) · (∇Di) (137)

−∇ ·
(
WDu

(1)
)
−D ·

[
(D · ∇)u(1)

]
−∇ · (pDD)

where we have defined the normalized energy density WD associated with D, and
pressure difference pD as

WD =
1

2
(D ·D) and pD = p(2) − p(1) (138),(139)

Integrating equation (137) over all R3 space, we obtain

dED
dt

= ν

3∑
i=1

∫
R3

∇ · (Di∇Di) d3x− ν
∫
R3

3∑
i=1

(∇Di) · (∇Di) d3x (140)

−
∫
R3

∇ ·
(
WDu

(1)
)
d3x−

∫
R3

D ·
[
(D · ∇)u(1)

]
d3x−

∫
R3

∇ · (pDD) d3x

where we have defined the normalized total energy density associated with D as

ED(t) =

∫
R3

WD(x, t) d3x =
1

2

∫
<3

D(x, t) ·D(x, t) d3x (141)

The first, third, and fifth terms on the right-hand side of equation (140) vanish
via the divergence theorem and the fact that the integrands in each of these terms
approach zero as 1/(|x|+ a)2κ as |x| → ∞. Therefore, equation (140) becomes

dED
dt

= −
∫
R3

(
3∑
i=1

ν(∇Di) · (∇Di) + D ·
[
(D · ∇)u(1)

])
d3x = Y (t) (142)

where we have defined

Y (t) = −
∫
R3

(
3∑
i=1

ν(∇Di) · (∇Di) + D ·
[
(D · ∇)u(1)

])
d3x (143)
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Integrating both sides of equation (142) with respect to time, we have

ED(t) =

∫ t

0

Y (t′) dt′ (144)

where we have used the fact that ED(0) = 0 since u(1) and u(2) have the same
initial conditions where we have used the fact that ED(0) = 0 since u(1) and u(2)

have the same initial conditions (ie. u(1)(x, 0) = u(2)(x, 0) = u0(x) at t = 0 and all
x ∈ R3. To determine ED(t) for t > 0, let us construct a grid G of discrete time
values t′n on the interval 0 ≤ t′ ≤ t such that

0 = t′0 < t′1 < t′2 < ... < t′N = t (145)

where N is the number of subintervals defined by G on the interval. We define a finite
time difference estimate of the solution of equation (142), or equivalently (144), at the
grid times t′n according to

E
(G)
D (t′0) = E

(G)
D (0) = ED(0) = 0 (146)

for n = 0, and

E
(G)
D (t′n+1) = Y (G)(t′n)(t′n+1 − t′n) + E

(G)
D (t′n) (147)

for 0 ≤ n ≤ N . The values Y (G)(t′n) in this equation are obtained from equation
(143), where we set t = t′n and D = D(G)(x, t′n), where D(G)(x, t′n) is the finite
difference estimate of D at time t′n. Since D(x, 0) = 0 for all x ∈ R3, equation (143)
implies that Y (G)(0) = 0. Inserting this result into equation (147) with n = 0, we

have E
(G)
D (t′1) = 0. From equation (141), we then have

ED(t′1) =

∫
<3

W
(G)
D (x, t′1) d3x =

1

2

∫
R3

D(G)(x, t′1) ·D(G)(x, t′1) d3x = 0 (148)

where we have defined W
(G)
D (x, t′n) as the WD function corresponding to the finite

difference approximation at t′n. Since the integrand in this equation is continuous

and greater than or equal to zero at all points x ∈ R3, E
(G)
D (t′1) can equal zero only

if D(G)(x, t′1) = 0 at all points x. Inserting this result into equation (143), we then

have Y (G)(t′1) = 0. This implies (via equation (147)) that E
(G)
D (t′2) = 0, which in

turn implies that D(G)(x, t′2) = 0 at all points x ∈ R3, and therefore Y (G)(t′3) = 0.
If we continue in this manner, we may show that

Y (G)(t′1) = Y (G)(t′2) = ... = Y (t′N ) = 0 (149)

and
E

(G)
D (t′1) = E

(G)
D (t′2) = ... = ED(t′N ) = 0 (150)

regardless of the grid time spacing or number of grid points. Therefore, in the limit
as maximum difference between successive grid times (ie. max over n of tn+1 − tn)
approaches zero, these equations become

Y (t) = 0 and ED(t) =

∫ t

0

Y (t′) dt′ = 0 (151),(152)

for all t ≥ 0. Inserting equation (151) and (152) into (141), we have

ED(t) =
1

2

∫
R3

D(x, t) ·D(x, t) d3x = 0 (153)

Since the integrand D(x, t) ·D(x, t) in this equation is greater than or equal to zero
and is continuous in x over all R3 we must have D(x, t) ·D(x, t) = 0 for all x and t.
Inserting this result into equation (135), we then have u(1)(x, t) = u(2)(x, t) for all
x and t, and therefore the solution is unique. Since this difference D(x, t) between
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the solutions u(1)(x, t) and u(2)(x, t) is identically zero, if follows that the solution
u(x, t) is unique.

Conclusion

In this paper, we have shown existence of a solution of the zero driving-force
Navier-Stokes equation in free space with given initial fluid velocity and spatial
derivatives profiles which approach zero as 1/(|x| + a)κ as |x| → ∞, assuming a
scalar pressure and incompressibility of the fluid. Existence of a smooth, finite
energy solution was proven by first establishing that such a solution would retain
this spatial characteristic when propagated over any finite time interval. Next, it
was proven that the solution u(x, t) must be bounded by showing that the time
integral of the scalar pressure gradient ∇p remains bounded and continuous despite
possible irregularities in the solution components ui and their spatial derivatives.
Finally, we showed that the solution is unique.
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