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ABSTRACT. Existence of a solution to the driving-force free Navier-Stokes
equation with a given initial fluid velocity profile is proven assuming a scalar
pressure function and incompressible flow. It is assumed that the fluid is flow-
ing in free space under the forces of viscosity and scalar pressure gradients
only, and that there are no external driving forces. Also, it is assumed that
the absolute value of the initial velocity profile and all of its spatial derivatives
approach zero as 1/(|x| + a)® as |x| — oo, where & is a constant such that
3/2 < k < 2, and a is a positive constant. First, we show that for any velocity
profile with this spatial characteristic, there exists a scalar pressure gradient
with an absolute value that also approaches zero as 1/(|x| + a)* as |x| — oo.
We then show that any fluid velocity solution would retain this spatial profile
characteristic when propagated in time over a finite interval 0 < t < T'. Next,
we show that such a solution is bounded over all x € R3 and ¢t > 0, thereby
establishing existence and smoothness. The key step to proving this is to show
that the time integral of the scalar pressure gradient Vp, which is basically
the total impulse per unit volume due the pressure gradient, is continuous and
bounded at all times ¢ > 0, regardless of any irregularities that may arise in the
solution u or its spatial derivatives. This is because it is the Poisson integral
that is used to obtain p and Vp, and the integration process tends to “smooth
over” any irregularities in the du;/dx;. Then, since the time integral of Vp
acting on a fluid element at the spatial maximum of K = u-u/2 can only be
finite, the growth of the global maximum of K during the integration time can
also only be finite. Therefore a “smooth blowup” of the solution u(x,t) and
p(x,t) cannot occur. In fact, u(x,t) — 0 over all of x € R as t — oco. Finally,
we show that the solution u(x,¢) and p(x,t) is unique.

INTRODUCTION

The Navier-Stokes equation is one of several equations which governs fluid mo-
tion. Essentially, it is a statement of Newton’s Second Law (F = ma) applied to the
infinitesimal fluid elements, taking into account the pressure gradients and forces
due to viscosity. Proving existence and uniqueness of solutions to this equation with
various initial conditions and driving forces has been of great interest to the mathe-
matics community (Ref. 1, 2). In this paper, we prove existence and smoothness of
a solution to the zero driving-force Navier-Stokes equation for incompressible fluid
flow, given a smooth initial fluid velocity profile.

The approach is to first establish existence and spatial dependence of the scalar
pressure function at a particular time, given the fluid velocity as a function of
the spatial position x at that time. As we will see later, this scalar pressure p
not only exists but is also spatially continuous, even if smoothness of the solution
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u(x,t) and its spatial derivatives breaks down. This is because p is a solution to
the Poisson equation where the inhomogeneous term @Q(x,t) specifically depends
on the du,/0x; derivatives, and the solution is obtained from the Poisson integral
of this @ function. As with integrations in general, this integral tends to “smooth
over” erratic behavior of the integrand, and therefore p and Vp are not sensitive to
discontinuities, spiking on sets of zero volume, or other forms of spatial “roughness”
of the fluid velocity components wu; or their spatial derivatives.

We then define a finite difference approximation of the solution that uses the
maximum fluid velocity profile along with the determined scalar pressure gradients
at each time step to determine the maximum fluid velocity profile at the next time
step. This establishes that if a solution does exist, then it will comply with the
boundary conditions “at infinity” and will be of finite energy.

Next, we establish a connection between the first spatial derivatives Ou;/0x;
and the time integral of Vp. Here, it is shown that this time integral is finite for
all x € R3 and t > 0. Therefore, the change in momentum per unit volume from
Vp acting on a fluid element is also finite. If this fluid element is at the global
maximum point of K (or equivalently |u|), then Vp is the only force acting on
it that could result in a positive acceleration, or increase in K. But since this
change in momentum is finite, so is the final value of K at any time ¢ > 0. This
establishes that a smooth, finite solution u(x,t) and p(x,t) exists for the given
problem. Finally, we show that this solution is unique.

It should be noted that this paper does not follow the general approach used by
many authors of constructing weak solutions, and then showing that these solutions
must be smooth (Ref. 1, 3-6). These methods are generally extremely difficult to
follow unless the reader is highly proficient in functional analysis. Also, the authors’
“recasting” of the problem is oftentimes unclear. In this paper, a reader with an
undergraduate background in calculus, differential equations (ordinary and partial),
and vector analysis should be able to follow the arguments.

PROBLEM DESCRIPTION

Written in vector form, the Navier-Stokes equation is given by

p{g—? + (u-V)u] = oV?u — VP + F(x,t) (1)
where u is the fluid velocity, p is the fluid density, P is pressure, o is the viscosity
coefficient, and F is the external force per unit volume acting on the fluid elements.
In addition to satisfying equation (1), a solution u must also satisfy the equation
of continuity, or mass balance, which is given by

%+V~(pu):0 (2)

This equation states that whatever net fluid mass (per unit time) flows into a fluid
element must appear as increased mass of the element, or equivalently, the mass
density at that point in the fluid space.

In the problem we are considering, we assume an incompressible fluid, and there-
fore the density is constant. In this case, we can write equation (1) as

%: + (u-V)u = vV’u — Vp + f(x,1) 3)
where v = o/p is the normalized viscosity coefficient, p = (P — P4)/p is the

normalized pressure, P4 is the ambient pressure (ie. the pressure at infinity), and
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f = F/p is the force per unit mass acting on the fluid elements. Also we assume
that all external forces acting on the fluid are zero for ¢ > 0. That is, we assume
that external forces may have acted on the fluid at times ¢t < 0, thereby giving rise
to an initial fluid velocity profile u’(x) at ¢t = 0 which we will assume is known.
Therefore, equation (3) becomes

0
871751 = vV?u — (u-V)u — Vp (4a)
or equivalently
ou; 9 3 ou;
Era vV=ou, Z kaxk 8951 (4b)
for our current problem. The initial condltlon on u is given by
u(x,0) = u’(x) or u;(x,0) = ud(x), i =1,2,3 (5)

where u’(x) is a specified vector function of the spatial coordinates. Furthermore,
we will assume that u®(x) € C* (ie. has continuous partial derivatives to all orders
with respect to each spatial variable). For a smooth, physically acceptable solution,
we must also assume there exist constants a and C,,, such that

gm=mitma+ms ug a2 Ch,

Oz™ 9xm2 9z™3 | — (|x|+ a)®

|8,Tu?(x)‘ < max

(6)

where m = my +ms +mgz, O denotes any m'™ order spatial derivative, and s can
be any constant such that 3/2 < k < 2. These conditions ensure that the initial
total energy of fluid motion given by

Eo :/ l|u0(x,t)|2d3x (7)
R3 2

is finite and that the scalar pressure function p exists. Also, as will be shown later,
the pressure gradient |Vp| approaches zero as a?/(|x| +a)? as x| — oo for any such
value of k between 3/2 and 2. Therefore, the fluid velocity components u; need not
approach zero as |x| — oo any faster than a?/(|x| + a)?, even if the chosen initial
conditions are consistent with values of x > 2. To show the initial energy of fluid
motion is finite, we insert inequality (6) into (7) and obtain

— = 3 12}@
EO?/[RJ | xt‘d < CLC'OZ/3 \x\—i—a

0o o 2
— 9ra2h 2 / Ti = 2 2/ —
ma~"Ch ; . rta dr = 6ma”"Cj o (rta) dr (8)
— 3 2 1 1 1 = 6ma’C§
767Ta00<2‘%_3 K_1+2,£_1>  (2—=3)(k—-1)(2k—1)

From this equation we see that k must be greater than 3/2 for a finite Ey.
Now let us consider the issue of V - u and the pressure gradient Vp. Since p is
constant, we see from equation (2) that we must have

Voux,t) = g"k (x,8) = 0 )

in order to satisfy the equation of contlnulty. Therefore u’(x) in equation (5) must
be a divergence-free vector function. Taking the divergence of both sides of equation
(4a), we have

D (@ow+ V() = V) - T (10)
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Inserting equation (9) into (10), we obtain
Vip = =V -[(u-V)u] (11)

Carrying out the differentiations indicated on the right hand side of equation (11),
and using equation (9), we have

v = o> (2 (2 - g (12

Jj=1k=1

(See Ref. 2, p. 35, Ref. 7 Ch. 2, Ref. 8) where we have defined

;Z:: (2;‘; )g%?(x, t)) (13)

Equation (12) governs the pressure needed in order to satisfy equation (9). If the
partial derivatives of the u; and u; on the right-hand side of equation (12) are
known functions of the spatial coordinates x, we can solve this equation as a form
of Poisson’s equation. From potential theory (Ref. 9, 10, 11), the solution is

_ ’ ’ 3./ _ _i Q(X 1) 3.,
p(X,t) - B3 G(X7X ) Q(X 7t) d X = 471_ &3 |X XI| d (14)
where
Glxx) = —— L1 (15)
’ T 4w x — x|

is the Greens function associated with the Poisson equation and the boundary
condition that the solution approach zero as |x| approaches infinity. Taking the
gradient of both sides of equation (14) we have

Vo) = = [ Q60 @ d*x (16)

47r |x —x
EXISTENCE AND UNIQUENESS OF SOLUTION

Existence and Spatial Dependence of Scalar Pressure Function. Before
demonstrating a solution to the Navier-Stokes equation (4) with the given initial
condition and incompressibility constraint, we must first verify that the scalar pres-
sure function p does in fact exist and has the proper spatial dependence for fluid
velocity fields u(x,t) that satisfy

aH

ui(x,t)| < e Alu] (t 17
uie )l < e Al 0 an
ou; a” Ou;
<
’3%’ (X’t)‘ = (xtar [8%} ®) (18)
and in general
8m1+mg+m3ui a® 8m1+m2+m3ui
e <
0" Dy Owy™® & t)’ ~ (x[+a)s [ax’;“ax’;wax;%] ®) (19)

where the A[] coefficients may vary with time but not the spatial coordinates.!
Note that the Cp, coefficients from inequality (6) can be used as initial values for
the A[](t) functions in (17)-(19). In this section, these inequalities are taken as a
given, and we show that the scalar pressure function p and its gradient Vp exists

1Throughout this section, we use A[f] to denote a proportionality coefficient associated with
the function f enclosed in the square brackets, where f has the property of approaching zero
as 1/(|x| + a)® as |x| — oo. This coefficient, which may depend on time but not the spacial
coordinates, is defined such that |f(x,t)| < a®A[f]/(|x| + a)®. This notation was chosen in order
to avoid large numbers of variable names and/or subscripts and confusion about their meanings.
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for fluid velocity spatial profiles satisfying these boundary conditions “at infinity”.
In the following sections, we use the initial conditions along with the results of
this section to show that solutions u(x,t) to the Navier-Stokes equation do in fact
satisfy (17)-(19) for all values of ¢ for which u(x,t) remains defined.

We start by obtaining expressions, based on the Poisson integral, for p and its
spatial derivatives. Let us choose three non-negative integers my, mo, and mgs, and
different equation (12) m; times with respect to x1, msy times with respect to xo,
and mg times with respect to x3. The result is

V2 3m1+m2+ﬂ13 p(X, t) _ aM1+m2+ﬂ13 Q(X, t) (20)
oMz 0mM2o0™3 3 o OM1g10M200M3 T3
Then, using the same potential theory that was used in equation (14), we obtain
m1+ma+m3 m1+ma+m3a !
a p(X, t) — i 1 8 Q(X 7t) dSX/ (21)
Om1z10M2250™3 13 A Jgs |x — x| O™iz10™2x20™3 23

We also obtain the spatial derivatives of the Vp components (ie. dp/0x;) by dif-
ferentiating equation (21) with respect to x;. The result is

oh B 8m1+m2+M3+1 p(x, t) o i i —m; 6m1+m2+M3 Q(X',t) d3x' (22)
Ox;  OmMiz10m2xa0msxsdx; AT Jps [x — X/|2 Omiz 0m2a0msxs
where we have defined the function h as
8m1+m2+m3 t
h(x,t) = hlmi, ma, ms](x,t) = p(x,?) (23)

O™ x10M2050™3 13

We now differentiate equation (13) my times with respect to z1, meo times with
respect to xo, and mg times with respect to x3 to obtain

8m1+m2+7n3Q x t 3m1+m2+m_37a7[37'y+1u (x t)

<2 mi mao ms k )
G S S S SIS () () () et

j=0k=0 a=0 8=0~v=0

Gratmatmatly o 4

X
Ox1™10x2™20x3™30x )

(24)

where we have used the Leibnitz rule for determining higher derivatives of the prod-
uct of two functions. The quantities in parentheses to the right of the summation
signs are binomial coefficients. Since, by hypothesis, each of the derivatives on the
right-hand side of equation (24) approaches zero as 1/(|x| + a)® as |x| increases,
this equation implies

oI t) | a*B(t) (25)
Ox1™m1 0w ™2 0233 (|x] + a)2~
where

3 mi mz m3

-X eSS (5)()

j=i k=1 =0 =0~=0 v

m1+mo+m a—B—v+1 mi+mao+m +1
o A[a 1tmaetms— uk(x,t):| |:8 1tmatmatly,(x, t)} (26)
8:1317"170‘81727”27B8$3m37781‘j Ox1™10x2™20x3™3 01,

and the A[] coefficients are defined in inequality (19). Taking the absolute value of
both sides of equation (21) and using the triangle inequality, we have
gmitmatms p(X, t)
8'm1 15187"2 .’E287"3.’K3

1 1 8m1+m2+MS Q
T /R3 |x — x/| ‘83:;”103:;"26 ;"5(
2Kk
R

= 0r Jo x| (%[ +a)

)‘dfi/
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Expressing the integral on the right-hand side of this inequality in spherical coor-
dinates, we write

87"1"’7"2 +ms3 p(x, t)

OM1ix10™M2x,0™3 T3

1 oo pm 2w a?" r’?sinf’ v
< —B dg’ o’ d
T An ®) ‘/0 ‘/0 /0 (r' 4+ )2 [r2 4 1/2 — 2r1/ cos 6/]1/2 ¢ "
(28)
Performing the integration over ¢ and making the change of variable v’ = cos 6’
gives us

‘ omitma+msg p(x7 t)

OmM1x10™M2120™M3x3

< Lpw /w/l o r ' dr’ (29)
- v T
-2 0 _1 (7" +a)2~ [T2 42 27.7./1)/} 1/2

We now carry out the integration over v’ to obtain

1/2
1 oo a2k [r2 +r% = 21"1"’1)’] r'? . )
< - B(t d
< 580 [ e — L, dr

1B(t) /00 " +’;)2Hr+r’—\r—7"/|rr'dr' (30)

2
B 2K 12
- /7’2dr+Bt)/ L
r o (M 4a) (r' +a)2s ¢

Since 7’ > r in the second term on the right-hand side of this inequality, we have

T 2K oo 2K
| < B(t) / ( a 2 ! + B(t) / ( a 2y
0 r T

‘ gmi+matms p(x, t)

OM1g10™M2250M3 13

r r! _|_a)2,‘£ r! +a)2n
_BO [T e o B)
oy /0 (r' +a)2~ dr = 2k —=3)(k—1)2k—1)7r (31)

From this inequality, we see that p and its spatial derivatives approach zero at least
as fast as 1/r as r gets larger.

Let us now show that the spatial derivatives of Vp must approach zero as 1/r2
as r — oo. Differentiating equation (25) with respect to z; (1 = 1,2, 3), we have

oh o 3m1+m2+m3 P am1+m2+m3 (917
ox; a ox; <8m1x18m2x28m3x3) o Om1x10m2150™3 13 (8%)
1 x; —x, @mitmatms g 3./
= — — L 2
47 /RS |x —x'|3 Oz 0z dxy"? (1) d°x (32)

Thus far, we have not made any assumptions about the orientation of the coordinate
axises. Therefore, let us define our coordinate axises such that the point x is on the
positive x3 axis. In this case, the radial direction is along +x3, and we may write

X = res = re,orequivalently z1 = 0, z2 = 0, z3 = r (33)—(35)
where ez and e, are unit vectors in the z3 and radial directions respectively. For
the primed coordinates, we have

2y =1r'sinf cos @', x5 =1r'sinf sing’, x4 =1 cosd’ (36)-(38)
Inserting equations (33)-(38) into (32) and setting ¢ = 3, we obtain
2 gmi+ma+mg
223 (x,t) = / / / 8(1{"1 9277 0] 33 (r'sin@ cos ¢’, 7" sin @ sin ¢, v’ cos ', t)
/ / 12 . / /2 / / 3/2 ! ! / ah
X (r—r"cosf)r' sinf [r +r" = 2rr cos@] d¢'df dr’ = B (39)

where we have used equations (36)-(38) to express the (Cartesian) components of
x’ in terms of the primed spherical coordinates. We will later show that this radial
component of VA is in fact the dominant component in the limit of large values of
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|x|. Taking the absolute value of both sides of equation (39) and using the triangle
inequality gives us

Seol=s L]

(r — ' cos0')r'” sin ¢’

[7"2 + 7% — 2rr! cos 0’]3/2

om1 +ma+m3 Q

! . ! / s VA ! / /
8xm18xm28 g (' sin@’ cos ¢, sin @ sin¢’, " cos ', t)
1 2

X

d¢'do’ dr’ (40)

Inserting inequality (25) into (40), we then have
2n ot 12 . /
8h < / / / B(t |r — 7" cos@'|r'" sinf A/ do’ dr” (41)
87" 4’/T 7" =+ CL 2& [7”2 4 742 — 27! cos 01] 3/2
Performing the integration with respect to ¢’ in this inequality, we obtain

oh 1 oo 7 ar |r — 1" cos ¢’ 2 sin @’ .,
- < =
‘Brx’ t)‘ < 5 B(t) /0 /o CEE = 377 40" dr (42)

+ 2 — oy COSG/}

If we define
L(r) = 1 /OO L J(r,r"dr' (43)
2y (M ta)2= "
where
ki - 0l 2 s /
T(rr') = / [r —r'cos®|r 51n93/2 a0’ (44)
o [r24r?—2r cost]

Then we may write inequality (42) as

a2n

]. > / /
E(X,t)‘ < B(t)L(r) = 5B(t)/o o (e (45)

Let us now evaluate the integral in this equation. We first consider the case of
r’ < r. In this case equation (44) can be written as

1 r2(r — r'v) r'2 i 2r2 — 2rr'v
J(r, ") = / 5 373 dv = — 3 373 dv (46)
-1 [r2492% — 2rr’] 2r J [r2 4+ - 27’7“’}
2 [ r1 2 _9 2
_r / r2 4772 rr’ ;}/2 +/ - do
2r |/ [r2+r’272rr +7"/2 21"7"]
2 [ p1 Y 2
- / [7"24-7"2—27'7'1; dv+/ 3/2d1}
2r /-1 27"7“]
r 1/2
2 2 2 / ] 2
7i — [T T 2y |1 + o 7"2+r'2—27’r' e |1
T or rr! -t rr! -1
L (=) Ly
2r | rr/ r2

where we have made the change of variable v’ = cos#’. For r < 7', the factor
r — 1’ cos @', whose absolute value appears in equations (41)-(44), is less than zero
for values of v/ = cos @’ > r/r'. Therefore, we must change the sign of the integrand



8 DWIGHT M. WALSH

at v’ = r/r’ when evaluating J(r,7’). This function for » < 7’ then becomes

r/r’ 12(0 o 1 12(0 o
J(r,r/):/ = r'v) 372 dv—/ (= r'v) dv (47

-1 [r2 4772 2] /7! [7"2—1—7"2—27’7"]3/2

2 |2 ['r2 +7'% = 27‘7‘,11} 2 2 /2
_r T r/r! Y= 2 12 / -1/2 r/r!
o |2 | i Sl U A =
1/2
2 | .2 2 4 p'2 _opyp! ] 2
N rl rl [r +r 2rr'v |1 . r2 gl [r2 N e 27171/} -1/2\
2r | 2r rr! r/r! rr! r/r!

Let us check continuity of this function near » = 0 by evaluating

1m
r—0 r—0 7 r! s—1 1 — g2 s—114+s

2 2 _
limJ(r,r')—lim2T2<1 1(r)>—lim21 S lim—2——1  (48)

where we have made the change of variable

r\2
s=y1- (%)
Since J(r,r’) has a finite limit as r approaches zero for any value of v/ > r, this

function is continuous and therefore can be integrated with respect to r near r = 0.
From equations (46) and (47), we see that

12
/ T
J(r,r) < 23 (49)
if either r < 7’ or r > . Inserting inequality (49) into equation (43) we obtain

1 [0 g2rp2 , ad
L(r) < 72/0 Trar " T Bro k- Dk 1) (0)

which shows the 1/r? asymptotic behavior of L(r) in the limit as r — oco. At
first sight of inequality (50), one might believe that it implies a singularity exists at
r = 0. This “singularity”, however, is merely an artifact of our gross over-estimation
of J(r,r’") near r = 0. As we have already shown, J(r,r’) remains continuous and
integrable near = 0. Inserting this result into inequality (45) then gives us

Ooh

or

a® B(t)
2k —=3)(k—1)2k —1)72

()| < BOLO) < 1)
Thus, we see that |0h/9r| approaches zero as 1/r? as r — oo, and again the left-
hand side of this inequality remains bounded and continuous as r — 0.

From inequality (25), we see that the non-homogeneous term on the right-hand
side of equation (21) approaches zero as 1/r*% as r increases. According to in-
equality (31), however, h approaches zero as 1/r as r — oco. Therefore, the non-
homogeneous term in equation (21) can in general be made arbitrarily small com-
pared with the function h and its derivatives by choosing r sufficiently large. This
implies that h must approach a harmonic function (ie. solution of Laplace’s equa-
tion V2h = 0) in the limit as » — oo. Let hr be the (harmonic) function that
describes the asymptotic behavior of h as r — oco. That is Ay, is the function to
which h approaches as r increases. Since hy, is a harmonic function that approaches
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zero as r — 00, it can be written as
l

ho(r,0,0) = > > Dimr” ""VY0(0,0) (52)
I=0m l

where the Dy, are constants and the Y, are the spherical harmonics. Taking the
gradient of both sides of this equation, we have
Yim 1 0Yim

a0 OPe + A,

(97(;5) €y

(53)
Examining equations (52) and (53), we see that the dominate terms (at large values
of r) in hy, and Vhy, are those with | = m = 0. Therefore, the asymptotic behavior
of h and VA can be expressed as

oo 1
Vhy = 325" Dpur (42 [— (L4 1)Yim (0, 6) er +

I=0m=-—1

Doo DOO
ho — dVh - — . 54),(55
- Vamr o - Varr? © (54),(35)

in the limit as r — oo, with a properly chosen constant Dgo.? Also, note that equations
(54) and (55) are consistent with inequalities (31) and (51) respectively for large values of
r.

From equation (55), we see that in the limit as r» = |x| — oo, Vh approaches a vector
function with only a radial component. This implies that there must be a value r; such
that for » > r1, we have

[Vh-eg| < |Vh-er|, and [Vh-e4| < |Vh-e,| (56),(57)
where ey and ey are unit vectors in the polar and azimuthal directions respectively.

Therefore Vh - e,., Vh-eg, and Vh - ey are the components of VA in the radial,
polar, and azimuthal directions respectively. The absolute value of VA is given by

|Vh| = /(Vh-e.)2 + (Vh-eq)? + (Vh-es)? (58)
Inserting (56) and (57) into (58), we have
|Vh| = /(Vh-e.)2 + (Vh-e.)2 + (Vh-e.)? < /3(Vh-e,)? (59)

— V3|Vhee| = \/5‘@
or

for r > ry. Let us define rg = max[ry,a]. We then have from inequality (50)

a® 4a® 4a® 4a®
Lr) < — = < < if 60
(r) < 3r2 3(2r)2 = 3(r+r9)?2 — 3(r+a)? hr=>ro (60)
If r < rg, we define L. as the maximum of L over the radial interval 0 < r < rq.
Then we may write

. . . 4Lmax 2 4Lmax 2
L(r)(r +70)> < 4Lmayry which implies L(r) < o 7’07;02 S ot a;;) (61)
for r < rg. Combining our results from inequalities (60) and (61), we have
2
a
< 2
L0) < Al (62)
where we have defined
2
A[L](m1, ma2,m3) = 4 max {Lmax%, g] (63)

2This result is analogous to the dominance of the monopole term in the far-field (ie. large values
of |x|) in an electrostatics problem (See Ref. 11, Chapter 4). In such a problem, h corresponds to
the electrostatic potential, Vh corresponds to the electric field, and the right-hand side of equation
(21) corresponds to the charge density.
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and mq, mgo, and mg are the positive integers chosen for equation (20). Multiplying
both sides of inequality (51) by /3 and using (59) then gives us

V3a® _ V3d®
WA[L](mlvm%m?J)B(t) - (|X|+a)2

Since |0h/0x;| < |Vh| for i = 1,2, 3, this inequality along with equation (20) imply
that

|Vh| S A[L](m1,m2,7713) B(t) (64)

am1+m2+m3+1 a2 8m1+m2+m3+1
mq mo ms3 P i (X, tn) S 2 mi mao ms P j (t) (65)
0z " x5 0y Ox; (|x] + a) Ox "' 0z 2 0wy Ox;
K m1+ma+mg+1
(|x] + a)* Ox{" 0x5"? 0xy'3 0x;
where we have defined
8m1+m2+m3+1 P
Ay e ()] = VAL, mama) B0 (66)

and B(t) is given in equation (26). From this inequality and equation (26), we see
that [Vh| — 0 as 1/(|x| + a)? in the limit as |x| — oo provided the absolute value
of the spatial derivatives (to all orders) do so also. Hence, the components of Vp
and their spatial derivatives to all order satisfy the required boundary conditions.

Spatial Dependence of Solution. Before establishing existence of a solution of
the given problem, let us consider the maximum velocity spatial profiles we would
expect such a solution to have. We start by defining a grid G on a finite time
interval 0 < ¢ < T which consists of N time values t,, such that

O=to<ti<to<---<itn=T (67)

where N is a positive integer and T is the arbitrarily chosen length of the solution
interval. Let us now define a finite difference approximation u(@) of the solution u
to equation (4). First, we initialize u(®)(x,0) to u®(x), where u’(x) is the initial
profile of the solution u(x,t) given in equation (5). Therefore we write

u'@(x,0) = u’(x) or equivalently ul(-G)(x, 0) = ud(x) (68)

Next, we define the function u(®) at the chosen time grid values t,, for n > 1
according to the recursion relation

3 (@) (@)
ugc)(x, tnt1) = VV2u£G)(x,tn) - Zugf)(x, tn)aul (x,tn) — op (x,tn) | Atp
= oxy, ox;
+ uz(.G)(x,tn) (69)
where

Aty = tni1 — tn (70)

For values of ¢t between t,, and t,,41, we define the linear interpolation in time
w061 = [0 tn) — D0 )] o+ 0D ) (71)

Since equations (67)-(71) define a finite difference approximation to the solution of
equation (4), we expect the approximation u(® to converge to the solution u in
the limit as all of the At,, approach zero, provided that u remains defined on the
interval 0 < ¢ < T. Although these equations precisely define u(®) for any time
grid G, we have not yet shown that u(%) is bounded on the given time interval in
the limit as the At, approach zero. To prove existence, we must show that the
function u defined as

ux,t) = lim ul@(x,t) (72)

Atmax—0
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(where Aty is the largest value of At,,) does in fact remain bounded on 0 < ¢ < T'.
In this section, however, we are only considering the spatial dependence of the
solution assuming it does exist.

At this point, we show by induction that inequality (19) must be true for all
values of t,, since, by hypothesis, it is true initially (ie. for g = 0). Assuming this
inequality is true for some grid time t,,, we write

8'm1 +mao+ms3 u;

my mo ms3
Ox{"* 0xy"? Oxs,

an 8m1+m2+7n3ui

< A (tn) (73)

= (x| +a)s " |0z Ox52 Oz

(%, tn)

Differentiating equation (69) my times with respect to x1, mo times with respect
to x2, and mg times with respect to x3 gives us

8m1+m2+m3 u’(LG) 3 8nll+w12+w13+2u§G) (X, t") anzl+7n2+7n3+1p(G)

x,t = |v — x,t
(¢ tnt1) [ kZ::l Ox1™10x2™20x3™30x )2 81?18w;n28w?38:m( )

Oxr1™10xo™20x3™3
LS SE SRS () (ma) (ma) 2T T e ) 00 D o t) |y
P o -yar Yoo «a B Y Ox1™1~ Qrom2—F Jxz™m3—7  Jx, ™ OxoB OxszY dxy "

§mi1t+mat+ms “«(;G)

a=

+ (x,tn) (74

Ox1™1035™20x3™3

where again we have used the Leibnitz rule for finding higher derivatives of product
functions. As before, the quantities in parentheses to the right of the summation
signs are binomial coeflicients. Taking the absolute value of both sides of equation
(74) and using the triangle inequality, we have

S| EEEE()

k=1 a=0B=0~=0

omitma+ms u(_G)
1

t
8901’”161‘27”2 8I3m3 (X, TL+1)

am1+m2+m3—°‘—5—7u§f)(x,tn) aa+B+w+1u§G>(x7tn)

Ox1% OxaP Ox3Y Oz

(75)

] s

X
Ox 1M1~ Jxgm2—B Jrzm3—Y

3

+1/Z

k=1

8m1+m2+m3+2ugc>(x,tn) 3 gratmatma+1,(G)(x ¢,

O0x1™19xo™20x3™30x;

Ox1™M10xo™20x3™M3 8xi ]

N amatmatmay (D (x 1)

Ox1™10xo™20x3™3

Inserting inequalities (65) and (73) into (75), we obtain

gmitmatma (&) 3L 23 mi ma ms3 76
I ] () (9) ()
8w1m'18$2m28z3’"'3( +1) ;;)L;; [e} B Y (0
a2n 87711+7n2+7n37a757'7 Uk 3@+B+'y+l w;
tn) A .
(x| + a)2= Oxr1™M1—> Gram2—B Jrgm3—7 (tn) Ox1® OxoP Oxz? Oxy (tn)

o 3 N gm1+ma+mz+2 w; N gmitma+tmg+1 » A
- tn tn tn
+ (|x] 4+ a)* VkX::l Ox™1 0:327”'269:3”‘38wi (tn) + Ox1™10x2™20x3™30x; (tn)

+

a” amitmatms y,
t
(Ix] + a)= Ox1™10xT2™m2013M3 (tn)

Factoring a”/(|x| + a)” from the right-hand side of this inequality, we have

gmitmatms uEG)

Ox1™10xo™20x3™M3

a

u;
<
= (Xl +a)-

Ox1™10x9™20x3™3

(X7 tn+1)

K |: om +ma+ms3

[t )
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where we have defined
gmitmatmg . 3 myp mp mg m1 ma ms
2 | s en| = S50 5 () () () g
8m1+'ﬂL2+M3—a—L‘3—’Y Wk 8a+/3+’7+1 w;
X
O mM1—« 812771'27‘3 Oxz3™m3~Y Ox1 OxoP Ox3Y Oxy

} (tn) Aty

gmi+tmatmz+2 gmitmatmgtl

Us

A
+ ng:l |:8w1m1 ng’"ﬂaa:g"’ﬁawi

} (tn) At, + A { } (tn) Aty

Ox1™10xo™m20x3™30x;

87n1+7n2+7n3 w;
t A | ()
Ox1™10xo™20x3™3
and have used the fact that
aQn a®

(X +a = (x+ar

Inequality (77), however, is merely inequality (73) with n replaced by n + 1. Since
inequality (6) implies that (73) is true for n = 0, we have shown inductively that
for all n, there exists time-dependent coefficients A[|(¢,) such that (73) is true.

Since these spatial dependencies of the ul(-G) must hold for any positive integer IV,
inequality (73) becomes

am1+m2+m3ui an am1+m2+mgui
W(X’ )| < — A o ma sy | (1) (79)
]t Oz 2 Oxy (x| + a) Ox "t 0xy? Oy

in the limit as Atyax — 0. The solution u as defined in equation (72) must be
consistent with this inequality.

Existence of Pressure Gradient Integral over Time. As indicated in the
previous section, equations (67)-(71) define a finite difference approximation to the
solution u. This solution will exist if we can show that the u(%) remain bounded
in the limit as the time step sizes approach zero. We must first, however, establish
that the time integral of the scalar pressure gradient Vp exists and remains finite
over any finite time interval. We start with the original Navier-Stokes equation.

3

ou; 2 ou;
ot vV U Z kamk aml (4b)

Multiplying both sides of this equation by u; and summing over i, we obtain
3 3 3

IS DD ) SUUL D St O
i=1 =1

i=1 k=1

9 (L) =, 0w
ot\2 ') = ot

Equation (80) can be written as

Since

3

9 (1 > 9
;825(2u$> = y;uivzul ZZ kax < ) — Z:uza—il (81)

i=1 k=1
From elementary vector analysis, we have
AV (quul) = w; V- (Vul) + Vu; -Vu; = uivzui + Vu; - Vu,
and therefore
1 o

wiVeu; = V- (wiVu;) — Vu; - Vu; = V2 (§u1> — Vu; - Vu, (82)
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Inserting this result into equation (81), we obtain
3 3 3 3 3 3

8 /1 , o1 o (1 , ap
z&<§ul) = VZZ:;V (5111) - V;Vui-Vui — ZZukTQ(iul — Zui@xi

=1 1=1k=1 1=1

(83)
If we define the energy density of fluid motion K as
3
_1 . 2_1 :
K60 = 5 32 () = JuGe ) - utx ) (84)
equation (83) can be written as
oK g 2 LK p
5 = vV°K — V;Vul-Vul — ;uzﬁixl - 2 uzaf%
or equivalently
oK >
2
s :VVKfyZVui~Vuifu-VK7u~Vp (89)

=1

3
vV (VK) = vy (Vui - Vi) = V- [(K + p)u]
=1
where we have used the fact that V - u = 0 in the last step. Let us now define the
total energy of fluid motion as

Et) = K(x,t)d’x (86)
R3
The initial value Ey of this function was shown to be finite in equation (7). Let us

examine the evolution of the function E(t). Integrating equation (85) over R? and
using (86) gives us

dE . SR T P , W) dx
I RGNS o) IR ST I A R L

We now show that the first and third terms on the right-hand side of equation (8
vanish. Integrating equation (86) over the spherical region in R? defined by |x| <
we have

9
Ot Jixi<r

7)
R
3

Z/ (Vi - Vi) d*x
[x|<R

=1

K(x,t)d*x = y/ V- (VK)d’x — v
[x|<R

- / V- (p + K)u] d’x (88)
[x|<R

Applying the divergence theorem to the first and third terms on the right-hand side
of equation (88), we have
P 3
— K(x,t)d®x = VK -e,dS —
Y /x|§R (x,t)d°x 1//|X_R e Z/Z

=1

- /ll_R(p +K)u-e,dS (89)

/ (Vuz : Vui) d3X
Ix|<R

where e, is the unit vector in the radial direction. Differentiating both sides of
equation (84) with respect to x; gives us

S tet) = zui(x,t)g—z(x,t) (90)
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Since the function u as defined in equation (72) must be consistent with inequality
(79), we take the absolute value of both sides of equation (90) and use inequality
(79) along with the triangle inequality to obtain

g—th' Z|ulxt ‘ (Xt)’ < O}(ﬂt)miii;A[ui](t)ABﬂ(t) (91)

From this 1nequahty, we have

IVK(x,t)] <

\'M

(x.1) (92)

< (e DA [zz;hw

Applying inequality (92) to the first integral on the right-hand side of equation (89)
gives us

/ VK -e,dS
|x|=R

A
N
™
.
£
=
g

%} ®) /M:R Wraz O

47TR2 2K Bul
e > Ao a0

=1 j=1

Taking the limit of both sides of this inequality as R — oo, we obtain

lim VK -e,dS = 0 (94)
R— o0 |x|=R

From the last term on the right-hand side of equation (89), we have

IN

/ (p+K)u-e-dS
[x|=R

/ o Kilulds (95)

i)+ ) ALl
[, (P +Rw) G2 as
 AfJu]
(R+a)~

+ 47R* K(R)

IN

4R (Il(R) + K (R))

a” Aflul] a” Aflul]
(R+a)= (R+ a)

where we have defined [p[(R) and K (R) as the average values of |p| and K respec-
tively for |x| = R. Also, we have defined the fluid velocity magnitude coefficient

Alul](t) as

Allul](t) ZAQ[uk so that  |u(x,t)] < WAHUH (96)

where the Afu;](t) are from equation (17). In the right-hand side of inequality (95),
the scalar pressure p approaches zero as 1/R as R — oo, and the kinetic energy
density K approaches zero as 1/R** as R — oo. Therefore, the first term of the
right-hand side of this inequality approaches zero as 1/R*~! as R — oo, and the
second term approaches zero as 1/R3~2 as R — oo. Since k > 3/2, it follows
then that both terms on the right-hand side of inequality (95) vanish as R — oc.
Therefore, we have

= 47R’ p|(R)

lim (p+K)u-e.dS =0 (97)
R— o0 |x|=R
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Now we take the limit as R — oo of both sides of equation (89), and use (94) and
(97) to obtain

@ —VZ/ (Vi - V) d’x = —”ZZ/ (auz xt> ’x  (98)

=1 j=1

Integrating equation (98) with respect to time gives us

E(t) = Ey — VZZ// <8u1 t') Px dt’ < Eo (99)

=1 j=1

Since E(t) is bounded below by zero, the summation of the integrals in equation
(99) must be finite, and since each these of these integrals is positive, they must all
be finite. Therefore, we may write

au, / 2 3 r_
/ /R3 (3117] t ) d°x dt’ = Wij(t) (100)

where each of the W;;(t) functions are finite for all £ > 0 and as t — oc.

Let us now establish a connection between the W;;(t) functions and the time
integral of the scalar pressure gradient. We first note that since the integrands
in equations (99) and (100) are everywhere greater than or equal to zero, we may
write

auz / 3 / / (auz / ) 3 /
(x,t dPxdt’ < ) ) dPxdtt = Wit 101
/ /5'3(t ) (5% )) g3 \ OF; 50 ( )

where S3(t) can be any subset of R* which may change with time. Let us now show
that

[ fente]s

for all + > 0. We first define S3;(t) as the subset of S (at time t) where the time
integral of |Qu;/0x;| is greater than or equal to the time integral of |Ou;/0x;|. We

may then write
2
)| d3x dt’ / / (8“’ ,t’)) d3x dt’ (103)
53.(t") 8m]

[ L g
R3
2
+// (81‘3( )) d3x dt!
0 Jr3-53,(t) Ow;

8LL‘J *
Since both integrands on the right-hand side of inequality (102) are positive and
the subsets S} (t) and R® — S} (t) are both contained within R® for any time ¢, we

have
// (8“1 xt’)> d’xdt’ < // (81“ t’) d*x dt’ (104)
SS " 81‘] R3 8:CJ
¢ an ’ 2 3 ’ ¢ auj ’ 2 3 ’
<
AAS_ng(t,)(axi(x,t)) d*xdt’ < /O/Rg(aa:i(x’t)) d’x dt (105)

Inserting these into inequality (103) then gives us

aul 8uj / / / auz ’ 3 ’
< 1
/ /]R |G t) G d'x [ (o) * Pt (106)
8u]- / 3 /
+ /0 /RS <3x¢(x’t)) d°x dt

aul Ou]

< - . R
5 (1) 5, xdt' < Wi;(t) + Wit) 4,5=1,2,3 (102)

Uj
’ 9a;

and
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From the definition of the W;;(t) functions in equation (100), inequality (106) can
be written as

/L.

thereby proving inequality (102). Applying the triangle inequality to equation (13),

we have
3 3
CENIED 3

Integrating this inequality over R® and ¢ > 0, and using inequality (102) then gives

aul 8uj

8% o0x;

(x,t)| d®x dt’ < Wi;(R®t) + W;i(R®, 1) (102)

8%'. (x,1) 5.0 (x, t)’ (107)

/0 /RS 1Q(x, )| d*x dt' < ZE/ /RS gz )gzﬂ (x, )| d*x dt’ (108)
< ZZ[W“(t) + Wiilt)] = 2303 Wi(t)

Therefore, since each of the W;;(t) on the right-hand side if inequality (108) is
finite, the integral of |Q(x,t)| over any time interval and any subset of R must
also be finite. At this point, we show that this result implies that the time integral
of |Vp| must be finite for all x € R? and ¢ > 0. Applying the triangle inequality to
equation (16), we have

IVp(x, )] < / Q1) 'X X=X g i/ QGO o (100
x| i Jes - x|

Integrating both sides of this mequahty with respect time gives us

/t‘Vp(x ] dt' < / / QGO oy gy — / RGNy gy
0 ’ = A4rx R3 |x—x’| Ar 0 |X7X/‘
(110)

where we have reversed the order of integration over space and time. This is valid
since the solution u(x,t) and its spatial derivatives are smooth prior to any blowup.
From inequality 110, we then have

‘ 1 3 1 q(xlvt) 3
| wnten < o o e

Am Jgs |xfx/\ A Jgs |x — x/|
(111)
where we have defined

q(x,t) :/o |Q(x,t")| dt’ (112)

To obtain an upper bound on the time integral of |Vp(x,t)|, we first choose any
finite number R and split the integral in inequality (111) into two integrals as
follows

/ A o :/ ICSORW +/| (a6 e (113)
R

s |x —x/| xx/|>R [x—X/| x—x/|<Rr |x — x|

From the first integral on the right-hand side of this equation, we have

gx'\t) s, / Q( i) 3o 1 / / 3/
———=d < d'x < — ,t)d 114
~/\x—x’\>R |X_XI|2 x |x—x/|>R R2 R2 R3 q(x ) * ( )

since R < |x — x| and the integration region described by {x/| |x —x'| > R} is
a subset of R?. Therefore, according to inequality (114), the first integral on the
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right-hand side of inequality (113) is finite. Hence, we have

Q(xlvt) 3/ 1 ’ 3/
/\x—x'\>R |x—x/\2dx < 7z Asq(x,t)dx < oo (115)
Now let us consider the second integral on the right-hand side of equation (113).
We note that this is an improper integral since the integration region contains the
|x —x'| = 0 singularity. Therefore, we must evaluate this integral by excluding from
the integration region a small sphere of radius € centered at the singularity (ie. the
point x), doing the integral which now excludes the singularity, and then taking
the limit as e — 0. The basic approach we use is to first define a set of concentric
spheres og, 01,09, ...,0n with radii € = rg < 71 < ry < ... < ry = R respectively.
We then define a set of N spherical shells 53,53, 53, ..., S% as the regions between
two successive S spheres. That is,

S3 = Set of all points x’ such that ro

< x=x| <nm
S3 = Set of all points x’ such that r; < x —x'| < 7
53 = Set of all points x’ such that ro < x —x'| < r3

S3; = Set of all points x’ such that ry_1 < x —x'| < rN

Also, we make the following definitions:

V, = %W (rf’L — T2_1) = Volume of spherical shell Sf; (n=1,2,3,... ,N)
Ary, =7n —rn_1 = Thickness of spherical shell S2 (n=1,2,3,...,N)
7,(t) = Vi q(x',t) d*x’ = Mean value of q(x',t) over 53 (n=1,2,3,...,N)

Armax = max [Ar, where n =1,2,3,... | N]

Note that the g, (t) are all finite since V), along with the integral of ¢(x,t) over
any subset of R? are both finite. With these definitions, the second integral on the
right-hand side of equation (113) can be written as

a6t / X 116
/<\x x/|<R IX—X’\ Z \X—X’I (H0)

In each of the integrals on the right-hand side of this equation, the minimum value
of |x — x/| is r,,—1. Therefore, we may write

Xl7t / X/,t / 771Vn
\/:; Q( )2 dSX < /S3 q(2 )dSX — q2 (117)

3 |x —x/| B Th—1

Next, we note that the volume V,, of S2 must be less than the product of the surface
area of the outer sphere o3 and the thickness Ar,. That is

Vi, < drr2 Ary,
Inserting this inequality into (117), we have
/ — 2
/ 460 g < TV yng ) (L" ) Ary, (118)
53 |x —x/| Th_1 Tn—1
Inserting this result into equation (116) then gives us

/ KICSLI R < Z47rqn ( M)Q Ary, (119)

<|x—x/|<R |X — X’|
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Note that the sum on the right-hand side of this equation is finite since each of
the ¢,(t) is also finite. Since inequality (119) holds for all sets {r,} such that
e =19 <11 <71y < ..<ry = R,it must also be true that in the limit as
Arpax — 0 and N — oo, this sum must also be finite and we have

Q(X t 3 /
x < 47 g, (t) Ary 120

/<|x x|<r [x —x|? Z (120)
where we have used the fact that the ratio r,/r,—1 approaches unity in the limit
as Arpax — 0 and N — oo. Also, the set of ¢, (t) becomes a continuum function
q(r,t) and the discrete sum becomes an integral. Therefore, we write

’ R

/ 9Lt ,t)2 d’x < 47T/ q(r,t) dr
e<h—x'|<R [X = X/| e

Finally, since g(r,t) is finite at R = 0, the limit as € — 0 of the right-hand side of

this inequality exists and is finite. Therefore, we have

/ R
/ D < 471'/0 a(r,t) dr (121)

e<lx—x'|<R [x = X/|

which is also finite. Inserting inequalities (113) and (121) into (111) gives us
t i R
/ Vp(x, )| df’ < i/ 4Dy +/ art)dr (122)
0 | 0

4m x—x'|>R |X7X/‘
Since both terms on the right-hand side of this inequality have been shown to be
finite, we have shown that the time integral of |Vp(x,t)| is finite for all x and ¢,
including the limit as t — oco. This is a critical step toward establishing existence
and smoothness of u(x,t) over time.

Existence and Smoothness of Solution over Time. At this point, we show
that a solution u(x,t) which is initially smooth (ie. satisfies the boundary condition
that u(x,0) and its spatial derivatives to all order approach zero as 1/(|x| + a)" as
|x| — o0) will in fact remain smooth and finite for all ¢ > 0. From equation (84),
we see that u(x,t) will remain finite if and only if K (x,¢) does so also. Therefore,
let us show that K is in fact defined over all x € R? and ¢ > 0. We first define x*(¢)
as the position of the spatial maximum of K at time ¢, and K*(¢) as the value of
this maximum. If this same spatial maximum occurs at more than one point, then
x*(t) can be chosen as any one of them. Therefore, we write

K*(t) = K(x"(t),t) (123)
These values must, of course, exist initially since u(x,0) and K(x,0) are smooth by
hypothesis. Since K is initially smooth, it will remain so unless a global maximum
becomes infinite.? Let us determine how K*(t) evolves in time for a spatially smooth
K (x,t). Since, by hypothesis, a maximum of K occurs at x* and K is still smooth,
we must have
K
0z2
where inequality (125) arises from the second derivative test for spatial maxima.
Differentiating equation (123) with respect to ¢ and using equation (124), we obtain

dK* 0K . . dx* 9K
G = o Xt VRS = 5l

VK(x*(t),t) = 0 and (x*(#),t) < 0 (i=1,2,3) (124),(125)

x*,t) (126)

3Recall that in the section titled Spatial Dependence of Solution, it was shown that an initially
smooth solution would remain smooth for as long as it’s defined.
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Also, it should be noted that equation (126) is still valid even if x* changes discon-
tinuously in time due to evolution of another maximum point of K at a different
location. In this case, the value of K*(¢1) at the new global maximum location
must be the same as K*(¢;) at the previous location, where we have defined t; as
the time of the transition. Otherwise, there would be a discontinuity in K and
therefore u at a time when these functions are presumed to still be smooth.

We next insert x* into equation (85) and use equation (126) to obtain

dK* oK

G = (0.1 = v VK (x - VZWZ ) - Vus(x*(1),8)  (127)

— u(x"(t),1) - Vp(x ()ﬂf)
From inequality (125) and the fact that Vu; - Vu; > 0, equation (127) implies that

< (0,0 Vol (1),) (128)

At this point, we define K7 (t) as the maximum value of K*(t) allowed by inequality
(128). Examining this inequality, we see that the largest possible values for the time
derivative of K* occur when u(x*(t),t) and Vp(x*(t),t) are anti-parallel vectors.
In this case, the right-hand side of inequality (128) becomes

lu(x" (1), )| Vp(x™ (1), 1) = V2 [Vp(x"(t), )] v/ K*(2)

where we have used equation (84). Therefore, the largest possible values at time ¢
for the time derivative of K*(t) is determined from the ordinary differential equation

dgl V2 [Vp(x*(t),t)] VKT (129)

Upon integrating this equation with respect to ¢, we obtain K7 (t) which we defined
as the greatest possible value of K*(¢). To solve this equation, we divide both sides
by /K7 and integrate with respect to ¢ to obtain

= % (/Ot|Vp(x*(t'),t')| dt’ + 2Kg>2 (130)

where K is the initial value of K*.

Let us now consider the question of whether K, and therefore u, can reach
infinite values at some blowup point x;. If this happens, it must be a ”smooth”
blowup which starts with a global maximum of K forming at x;. Let ¢, be the
time at which this global maximum first forms. It is important to note that ¢, is
not a blowup time, but only a time when K could start having values at x; that
are greater than the current maxiumum of K. Therefore, the value of K (xp,tp) is
finite. At this point in time, however, a smooth blowup can occur where K(x,t)
remains smooth but the maximum K (x3,t) becomes arbitrarily large for sufficiently
large values of t. To determine if this happens, we note that from equation (130),
we have

* 1 tokat ’ / ?
Ki(ty +At) = 3 </ |Vp(x*(t),t")] dt’ + /t |Vp(xs,t)| dt’ + \/QKS)
b

(131)
where we have defined At as the time interval over which the blowup occurs. The
first integral on the right-hand side of this equation must be finite since, by hy-
pothesis, a smooth solution (and therefore a smooth Vp) exists for all x prior to
time t,. The second integral must also be finite since

ty+At tp+At
[ e a < [T vna, 0] i
tp 0
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and according to inequality (122), the integral on the right-hand side of this in-
equality is finite for all At > 0, including the limit as At — oco. Therefore, it is
not possible for K to ever reach infinite values. Hence, the solutions for the fluid
velocity u(x,t) and the scalar pressure function p(x,t) exist and are bounded and
smooth for all ¢ > 0. Furthermore, equation (98) implies that the total energy of
fluid motion E decreases monotonically to zero. Then, since the solution u has
been shown to be smooth, it follows that u(x,t) — 0 as t — oo for all x € R3.
QED

Uniqueness of Solution. Let us now show that the solution of the given problem
is in fact unique. We start by defining u*(x, ) and u(®(x, t) along with the corre-
sponding scalar pressure functions p")(x,t) and p(?(x,t) as two possible solutions
of equation (4) with initial condition (5) and zero-divergence constraint (9). We
therefore write

8;:1) = v — @V V)@ - vt (132)
and >
8;: = wWu® — @@ . v)u® - vp® (133)
Subtracting equation (132) from (133), we have
%]3 =vV’D - (u? - V)D - (D V)u + vp!V — vp@® (134)
where we have defined
D(x,t) = u®@(x,t) —u(x, ) (135)

as the difference between the two solutions. Taking the scalar product of both sides
of equation (134) with D, we have

D- %—? = D-V’D-D- [(u<2) -V)D] -D- [(D : V)u“)} +D-vp) - D vp®
3 3 3 aD: 3 3 PE
= vy DiVDi =Y Y D5 =37y DDyt~ D (Vp® — V)
i=1 i=1 k=1 Rt Tk
3 3 1
=vY V- (D;VD))—v> (VD) (VD;) —u" . ¥ (ED : D) (136)
i=1 i=1

-D. [(D : V)u“)] —D - (Vp? — vp®)

— 3 V(DD - v 3 (VD) (VD) + V- (%D : D) + %(D D)V - u®

=1 1=1

_D. [(D . v)u(l)] L v [(p(2> _ p(l))D] + (p<2> _ p(l))v .D

Since V- u™ =0 and V- D = 0, the fourth and seventh terms on the right-hand
side of this equation vanish, and we write

3;? — v} V- (DiVD) - v I (VD)) (VD) (137)

-V (Wpu®) =D [(D-V)u"] -V (ppD)

where we have defined the normalized energy density Wp associated with D, and
pressure difference pp as

Wop=3(D D) and pp=p® —p» (138),(139)
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Integrating equation (137) over all R? space, we obtain

dEDf Z Vo (D:iVDy)d x—V/ZVD (VD;)d® (140)

—/ V. (WDu(D) d3x—/ D- [(D . V)u(1> d3x—/ V- (ppD)d’x
R3 R3 R3

where we have defined the normalized total energy density associated with D as
Ep(t)= [ Wp(x,t)d*x = 1 D(x,t) - D(x,t) d*x (141)
R3 2 Jps
The first, third, and fifth terms on the right-hand side of equation (140) vanish
via the divergence theorem and the fact that the integrands in each of these terms
approach zero as 1/(|x| + a)?* as |x| — oco. Therefore, equation (140) becomes
3

%D - */3 (Z v(VD;) - (VDi) + D - [(D : V)u(l)]> IPx=Y(t) (142)

=1

where we have defined

Y(t) = —/M <Z v(VD;)- (VD) +D- [(D- v)umD Px (143)

1=1

Integrating both sides of equation (142) with respect to time, we have

/ Y (¢)dt' (144)

where we have used the fact that Ep(0) = 0 since u® and u® have the same
initial conditions where we have used the fact that Ep(0) = 0 since u¥) and u(®
have the same initial conditions (ie. u¥(x,0) = u®(x,0) = u°(x) at t = 0 and all
x € R3. To determine Ep(t) for t > 0, let us construct a grid G of discrete time
values ¢/, on the interval 0 < ¢’ < ¢ such that

0=ty <th<th< .. <th =t (145)
where N is the number of subintervals defined by G on the interval. We define a finite
time difference estimate of the solution of equation (142), or equivalently (144), at the
grid times ¢, according to

ES) (to) = ESY(0) = Ep(0) = 0 (146)
for n =0, and

B (i) = YD)t = £) + B (1) (147)

for 0 < n < N. The values Y(@)(# ) in this equation are obtained from equation
(143), where we set ¢t = ¢/, and D = D@ (x,#/), where D(@)(x,#) is the finite
difference estimate of D at time t/,. Since D(x,0) = 0 for all x € R3, equation (143)
implies that Y(%)(0) = 0. Inserting this result into equation (147) with n = 0, we
have Ej(:,G)(t’l) = 0. From equation (141), we then have

Ep(th) =/ W (x,t)) d*x = %/ D9 (x,t}) - D9 (x,t))d*x =0 (148)
R3 R3

where we have defined W( )(x, t!) as the Wp function corresponding to the finite
difference approximation at t! . Since the integrand in this equation is continuous
and greater than or equal to zero at all points x € R3, EE)G) (t}) can equal zero only
if D(%)(x, ) = 0 at all points x. Inserting this result into equation (143), we then
have Y (&) (#/) = 0. This implies (via equation (147)) that Ej(:,G)(t’Q) = 0, which in
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turn implies that D(%)(x,#,) = 0 at all points x € R?, and therefore V(%) (t;) = 0.
If we continue in this manner, we may show that

YO =y 9Dy = .. =Y(th) =0 (149)
and

ESD ) = Bty = ... =Ep(ty) =0 (150)
regardless of the grid time spacing or number of grid points. Therefore, in the limit

as maximum difference between successive grid times (ie. max over n of t,11 — )
approaches zero, these equations become

t
Y(t)=0 and Ep(t) :/ Y(')dt' = 0 (151),(152)
0
for all ¢ > 0. Inserting equation (151) and (152) into (141), we have
Ep(t) = % D(x,t) - D(x,t) d*x = 0 (153)
R3

Since the integrand D(x,t)-D(x,t) in this equation is greater than or equal to zero
and is continuous in x over all R® we must have D(x,t)-D(x,t) = 0 for all x and ¢.
Inserting this result into equation (135), we then have u(x,t) = u®(x, t) for all
x and ¢, and therefore the solution is unique. Since this difference D(x,t) between
the solutions u(®(x,t) and u®(x,t) is identically zero, if follows that the solution
u(x, t) is unique.

CONCLUSION

In this paper, we have shown existence of a solution of the zero driving-force
Navier-Stokes equation in free space with given initial fluid velocity and spatial
derivatives profiles which approach zero as 1/(|x| + a)" as |x| — oo, assuming a
scalar pressure and incompressibility of the fluid. Existence of a smooth, finite
energy solution was proven by first establishing that such a solution would retain
this spatial characteristic when propagated over any finite time interval. Next, it
was proven that the solution u(x,t) must be bounded by showing that the time
integral of the scalar pressure gradient Vp remains bounded and continuous despite
possible irregularities in the solution components u; and their spatial derivatives.
Finally, we showed that the solution is unique.
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