EXISTENCE AND SMOOTHNESS OF SOLUTIONS TO THE 3D DRIVING-FORCE FREE NAVIER-STOKES EQUATION

VERSION 021

DWIGHT M. WALSH

ABSTRACT. Existence of a solution to the driving-force free Navier-Stokes equation with a given initial fluid velocity profile is proven assuming a scalar pressure function and incompressible flow. It is assumed that the fluid is flowing in free space under the forces of viscosity and scalar pressure gradients only, and that there are no external driving forces. Also, it is assumed that the absolute value of the initial velocity profile and all of its spatial derivatives approach zero as $1/(|\mathbf{x}| + a)^{\kappa}$ as $|\mathbf{x}| \to \infty$, where κ is a constant such that $3/2 < \kappa \le 2$, and a is a positive constant.

First, we show that for any velocity profile with this spatial characteristic, there exists a scalar pressure gradient with an absolute value that also approaches zero as $1/(|\mathbf{x}|+a)^{\kappa}$ as $|\mathbf{x}|\to\infty$. We then show that any fluid velocity solution would retain this spatial profile characteristic when propagated in time over a finite interval $0 \le t \le T$, provided that solution exists and remains finite. Next, we show that such a solution is bounded over all $\mathbf{x} \in \mathbb{R}^3$ and finite for all finite $t \ge 0$, thereby establishing existence and smoothness. This is done by showing that the global maximum of $(\mathbf{u} \cdot \mathbf{u})$ can grown no faster than time integral of ∇p which is shown to be finite for $t < \infty$. Finally, we show that the solution $\mathbf{u}(\mathbf{x},t)$ and $p(\mathbf{x},t)$ is unique.

Introduction

The Navier-Stokes equation is one of several equations which governs fluid motion. Essentially, it is a statement of Newton's Second Law ($\mathbf{F} = m\mathbf{a}$) applied to the infinitesimal fluid elements, taking into account the pressure gradients and forces due to viscosity. Proving existence and uniqueness of solutions to this equation with various initial conditions and driving forces has been of great interest to the mathematics community (Ref. 1, 2).

In studying the Navier-Stokes equation, many mathematicians have, over the years, developed the concept of "weak" solutions to help gain insight into the behavior of the equation without the need of finding more "exact" solutions, which may not be possible (Ref. 3). These weak solutions are obtained by relaxing some requirements of the original equation such that solutions are more tractable and easily described. In some cases, it may be possible to demonstrate the existence of a "strong" (or smooth) solution by successive refinements of the weak solutions, or even show that the weak solutions themselves are actually smooth.

In 1934, the French mathematician Jean Leray defined an important class of weak solutions to the Navier-Stokes equation. Instead of working with exact vectors at each point $\mathbf{x} \in \mathbb{R}^3$, the Leray solutions use vector averages over small neighborhoods. Leray showed in his paper that such solutions always exist and never

1

blowup. This achievement opened a new approach to the Navier-Stokes problem. Start with Leray solutions, which you know always exist, and see if you can use them to obtain smooth solutions, which you want to prove always exist.

This and similar methods seem to be the general approach in recent decades to resolving issues about the Navier-Stokes equation and its solutions, including the Millennium Problem sponsored by the Clay Mathematics Institute. Papers implementing these methods, however, are generally extremely difficult to follow, and may be completely understandable only to the authors themselves. This, of course, seriously impedes a proper review of their works since so few are capable of doing so. Also, potential issues in using a particular class of weak solutions may not arise until well after proposed proofs based on these weak solutions have been posted or even published. For example, in October 2018, Tristan Buckmaster and Vlad Vicol of Princeton University showed that under some circumstances, uniqueness of the Leray solutions may break down for the Navier-Stokes equation (Ref. 3, 4). Also, Terance Tao of UCLA constructed a smooth solution to the averaged Navier-Stokes equation that blows up in finite time (Ref. 5).

In this paper, we prove existence and smoothness of solutions to the zero driving-force Navier-Stokes equation for incompressible fluid flow, given a smooth initial fluid velocity profile. We do not, however, follow the general approach of establishing weak solutions, and then somehow showing how to obtain actual or smooth solutions from them (Ref. 6-10). Instead, the proof we present requires only an undergraduate background in calculus, differential equations (ordinary and partial), potential theory, and vector analysis for a reader to follow it.

PROBLEM DESCRIPTION AND MAIN THEOREM

Written in vector form, the Navier-Stokes equation is given by

$$\rho \left[\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right] = \sigma \nabla^2 \mathbf{u} - \nabla P + \mathbf{F}(\mathbf{x}, t)$$
 (1)

where \mathbf{u} is the fluid velocity, ρ is the fluid density, P is pressure, σ is the viscosity coefficient, and \mathbf{F} is the external force per unit volume acting on the fluid elements. In addition to satisfying equation (1), a solution \mathbf{u} must also satisfy the equation of continuity, or mass balance, which is given by

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{2}$$

This equation states that whatever net fluid mass (per unit time) flows into a fluid element must appear as increased mass of the element, or equivalently, the mass density at that point in the fluid space.

In the problem we are considering, we assume an incompressible fluid, and therefore the density is constant. In this case, we can write equation (1) as

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = \nu \nabla^2 \mathbf{u} - \nabla p + \mathbf{f}(\mathbf{x}, t)$$
 (3)

where $\nu = \sigma/\rho$ is the normalized viscosity coefficient, $p = (P - P_A)/\rho$ is the normalized pressure, P_A is the ambient pressure (ie. the pressure at infinity), and $\mathbf{f} = \mathbf{F}/\rho$ is the force per unit mass acting on the fluid elements. Also we assume that all external forces acting on the fluid are zero for t > 0. That is, we assume that external forces may have acted on the fluid at times t < 0, thereby giving rise

to an initial fluid velocity profile $\mathbf{u}^0(\mathbf{x})$ at t=0 which we will assume is known. Therefore, equation (3) becomes

$$\frac{\partial \mathbf{u}}{\partial t} = \nu \nabla^2 \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{u} - \nabla p \tag{4a}$$

or equivalently

$$\frac{\partial u_i}{\partial t} = \nu \nabla^2 u_i - \sum_{k=1}^3 u_k \frac{\partial u_i}{\partial x_k} - \frac{\partial p}{\partial x_i}$$
 (4b)

for our current problem. The initial condition on \mathbf{u} is given by

$$\mathbf{u}(\mathbf{x},0) = \mathbf{u}^{0}(\mathbf{x}) \text{ or } u_{i}(\mathbf{x},0) = u_{i}^{0}(\mathbf{x}), \ i = 1,2,3$$
 (5)

where $\mathbf{u}^0(\mathbf{x})$ is a specified vector function of the spatial coordinates. Furthermore, we will assume that $\mathbf{u}^0(\mathbf{x}) \in \mathbb{C}^{\infty}$ (ie. has continuous partial derivatives to all orders with respect to each spatial variable). For a smooth, physically acceptable solution, we must also assume there exist constants a, C_m , and κ such that

$$\left| \partial_{\mathbf{x}}^{m} u_{i}^{0}(\mathbf{x}) \right| \leq \max \left| \frac{\partial^{m=m_{1}+m_{2}+m_{3}} u_{i}^{0}}{\partial x^{m_{1}} \partial x^{m_{2}} \partial x^{m_{3}}} \right| \leq \frac{a^{\kappa} C_{mi}^{0}}{(|\mathbf{x}|+a)^{\kappa}}$$
 (6)

where $m = m_1 + m_2 + m_3$, $\partial_{\mathbf{x}}^m$ denotes any m^{th} order spatial derivative, and κ can be any constant greater than 3/2. This condition ensures that the initial total energy of fluid motion given by

$$E_0 = \int_{\mathbb{R}^3} \frac{1}{2} \left| \mathbf{u}^0(\mathbf{x}, t) \right|^2 d^3 \mathbf{x} \tag{7}$$

is finite. To show this, we insert inequality (6) into (7) and obtain

$$E_{0} = \int_{\mathbb{R}^{3}} \frac{1}{2} \left| \mathbf{u}^{0}(\mathbf{x}, t) \right|^{2} d^{3}\mathbf{x} \leq \frac{1}{2} a^{2\kappa} C_{0}^{2} \sum_{i=1}^{3} \int_{\mathbb{R}^{3}} \frac{d^{3}\mathbf{x}}{(|\mathbf{x}| + a)^{2\kappa}}$$

$$= 2\pi a^{2\kappa} C_{0}^{2} \sum_{i=1}^{3} \int_{0}^{\infty} \frac{r^{2}}{(r+a)^{2\kappa}} dr = 6\pi a^{2\kappa} C_{0}^{2} \int_{0}^{\infty} \frac{r^{2}}{(r+a)^{2\kappa}} dr \qquad (8)$$

$$= 6\pi a^{2\kappa} C_{0}^{2} \left(\frac{1}{2\kappa - 3} - \frac{1}{\kappa - 1} + \frac{1}{2\kappa - 1} \right) = \frac{6\pi a^{2\kappa} C_{0}^{2}}{(2\kappa - 3)(\kappa - 1)(2\kappa - 1)}$$

From this equation we see that κ must be greater than 3/2 for a finite E_0 . Also, as will be shown later, the pressure gradient magnitude $|\nabla p|$ approaches zero as $a^2/(|\mathbf{x}|+a)^2$ as $|\mathbf{x}| \to \infty$ for any such value of $\kappa > 3/2$. Inserting this result into the Navier-Stokes equation, we then show that it implies the fluid velocity components u_i will not in general approach zero as $|\mathbf{x}| \to \infty$ any faster than $a^2/(|\mathbf{x}|+a)^2$, even if the initial conditions are consistent with values of $\kappa > 2$. Therefore, the range of values of κ that would be compatible with a solution propagated in time is given by $3/2 < \kappa \le 2$.

¹In many claims of having solved the Navier-Stokes Millennium Problem, the authors state that the exponent $\kappa > 0$, consistent with the Official Problem Statement (Ref. 1). After this, they proceed with a highly esoteric analysis that probably few others can follow. Even if the reader is totally uninformed about their theory and methods, however, there is one aspect of their arguments that is quite noticeable. That is, the exponent κ is used only in defining initial conditions, and the actual analysis is completely independent of this exponent. Therefore, if their proof is correct, then it seems it would be possible to use their methods to "prove" existence and smoothness of infinite energy solutions which are not physically possible.

Now let us consider the issue of $\nabla \cdot \mathbf{u}$ and the pressure gradient ∇p . Since ρ is constant, we see from equation (2) that we must have

$$\nabla \cdot \mathbf{u}(\mathbf{x}, t) = \sum_{k=1}^{3} \frac{\partial u_k}{\partial x_k}(\mathbf{x}, t) = 0$$
 (9)

in order to satisfy the equation of continuity. Therefore $\mathbf{u}^0(\mathbf{x})$ in equation (5) must be a divergence-free vector function. Taking the divergence of both sides of equation (4a), we have

$$\frac{\partial}{\partial t} (\nabla \cdot \mathbf{u}) + \nabla \cdot [(\mathbf{u} \cdot \nabla)\mathbf{u}] = \nu \nabla^2 (\nabla \cdot \mathbf{u}) - \nabla^2 p \tag{10}$$

Inserting equation (9) into (10), we obtain

$$\nabla^2 p = -\nabla \cdot [(\mathbf{u} \cdot \nabla)\mathbf{u}] \tag{11}$$

Carrying out the differentiations indicated on the right hand side of equation (11), and using equation (9), we have

$$\nabla^2 p = -\sum_{j=1}^3 \sum_{k=1}^3 \left(\frac{\partial u_j}{\partial x_k} \right) \left(\frac{\partial u_k}{\partial x_j} \right) = -Q(\mathbf{x}, t)$$
 (12)

(See Ref. 2, p. 35, Ref. 11 Ch. 2, Ref. 12) where we have defined

$$Q(\mathbf{x},t) = \sum_{j=1}^{3} \sum_{k=1}^{3} \left(\frac{\partial u_j}{\partial x_k} (\mathbf{x},t) \frac{\partial u_k}{\partial x_j} (\mathbf{x},t) \right)$$
(13)

Equation (12) governs the pressure needed in order to satisfy equation (9). If the partial derivatives of the u_j and u_k on the right-hand side of equation (12) are known functions of the spatial coordinates x, we can solve this equation as a form of Poisson's equation. From potential theory (Ref. 13, 14, 15), the solution is

$$p(\mathbf{x},t) = -\int_{\mathbb{R}^3} G(\mathbf{x}, \mathbf{x}') Q(\mathbf{x}', t) d^3 \mathbf{x}' = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{Q(\mathbf{x}', t)}{|\mathbf{x} - \mathbf{x}'|} d^3 \mathbf{x}'$$
(14)

where

$$G(\mathbf{x}, \mathbf{x}') = -\frac{1}{4\pi} \frac{1}{|\mathbf{x} - \mathbf{x}'|} \tag{15}$$

is the Greens function associated with the Poisson equation and the boundary condition that the solution approach zero as $|\mathbf{x}|$ approaches infinity. Taking the gradient of both sides of equation (14), we have

$$\nabla p(\mathbf{x}, t) = -\frac{1}{4\pi} \int_{\mathbb{R}^3} Q(\mathbf{x}', t) \frac{(\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} d^3 \mathbf{x}'$$
 (16)

Equations (14)-(16) are used in the next section to establish the existence and spatial profiles of the scalar pressure p and its gradient ∇p , given the spatial profiles of the fluid velocity \mathbf{u} .

At this point, we summarize the problem description by stating our main theorem.

If the Cauchy initial value problem for the incompressible Navier-Stokes equation is defined as

$$\frac{\partial \mathbf{u}}{\partial t} = \nu \nabla^2 \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{u} - \nabla p \quad where \quad \nabla \cdot \mathbf{u}(\mathbf{x}, t) = 0 \quad (4a)(9)$$

with the initial conditions given by

$$\mathbf{u}(\mathbf{x},0) = \mathbf{u}^{0}(\mathbf{x}) \text{ or } u_{i}(\mathbf{x},0) = u_{i}^{0}(\mathbf{x}), \ i = 1,2,3$$
 (5)

where $\mathbf{u}^0(\mathbf{x}) \in \mathbb{C}^{\infty}$ is a known divergence-free vector field in \mathbb{R}^3 , and is spatially smooth in the sense that there exists positive constants a, C_{mi}^0 , and κ such that

$$\left| \partial_{\mathbf{x}}^{m} u_{i}^{0}(\mathbf{x}) \right| \leq \frac{a^{\kappa} C_{mi}^{0}}{(|\mathbf{x}| + a)^{\kappa}} \quad m = 0, 1, 2, 3, \dots \quad and \quad \frac{3}{2} < \kappa \leq 2$$
 (6)

then a solution $\mathbf{u}(\mathbf{x},t), p(\mathbf{x},t)$ to this problem exists which is also smooth in the sense of the above equation. That is, there exists functions $C_{mi}(t)$ such that

$$|\partial_{\mathbf{x}}^m u_i(\mathbf{x},t)| \leq \frac{a^{\kappa} C_m(t)}{(|\mathbf{x}|+a)^{\kappa}} \quad m=0,1,2,3,\dots$$

These functions need not be continuous, but must be finite for all finite values of t. Furthermore, the solution $\mathbf{u}(\mathbf{x},t), p(\mathbf{x},t)$ is unique.

Proving this theorem is the objective of this work.

Existence and Uniqueness of Solution

Existence and Spatial Dependence of Scalar Pressure Function. Before demonstrating a solution to the Navier-Stokes equation (4) with the given initial condition and incompressibility constraint, we must first verify that the scalar pressure function p does in fact exist and has the proper spatial dependence for fluid velocity fields $\mathbf{u}(\mathbf{x},t)$ that satisfy

$$|u_i(\mathbf{x},t)| \le \frac{a^{\kappa}}{(|\mathbf{x}|+a)^{\kappa}} A_i[0,0,0;0](t)$$
 (17)

$$\left| \frac{\partial u_i}{\partial x_j}(\mathbf{x}, t) \right| \le \frac{a^{\kappa}}{(|\mathbf{x}| + a)^{\kappa}} A_i[0, 0, 0; j](t) \tag{18}$$

and in general

$$\left| \frac{\partial^{m_1 + m_2 + m_3} u_i}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} (\mathbf{x}, t) \right| \le \frac{a^{\kappa}}{(|\mathbf{x}| + a)^{\kappa}} A_i[m_1, m_2, m_3; 0](t) \tag{19}$$

$$\left| \frac{\partial^{m_1 + m_2 + m_3} u_i}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} (\mathbf{x}, t) \right| \leq \frac{a^{\kappa}}{(|\mathbf{x}| + a)^{\kappa}} A_i[m_1, m_2, m_3; 0](t) \tag{19}$$

$$\left| \frac{\partial}{\partial x_j} \left(\frac{\partial^{m_1 + m_2 + m_3} u_i}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} (\mathbf{x}, t) \right) \right| \leq \frac{a^{\kappa}}{(|\mathbf{x}| + a)^{\kappa}} A_i[m_1, m_2, m_3; j](t), \tag{20}$$

at some particular time t, where the $A_i[m_1, m_2, m_3; j](t)$ functions may vary with time but not the spatial coordinates. Note that the C_m coefficients from inequality (6) can be used as initial values for the $A[m_1, m_2, m_3; j](t)$ functions in (17)-(20). In this section, these inequalities are taken as a given, and we show that the scalar pressure function p and its gradient ∇p exists for fluid velocity spatial profiles satisfying these boundary conditions "at infinity". In the following sections, we use the initial conditions along with the results of this section to show that solutions $\mathbf{u}(\mathbf{x},t)$ to the Navier-Stokes equation do in fact satisfy (17)-(20) for all values of t for which $\mathbf{u}(\mathbf{x},t)$ remains defined.

We start by obtaining expressions, based on the Poisson integral, for p and its spatial derivatives. Let us choose three non-negative integers m_1, m_2 , and m_3 , and

differentiate equation (12) m_1 times with respect to x_1 , m_2 times with respect to x_2 , and m_3 times with respect to x_3 . The result is

$$\nabla^{2} \left(\frac{\partial^{m_{1} + m_{2} + m_{3}} p}{\partial x_{1}^{m_{1}} \partial x_{2}^{m_{2}} \partial x_{3}^{m_{3}}} (\mathbf{x}, t) \right) = - \frac{\partial^{m_{1} + m_{2} + m_{3}} Q}{\partial x_{1}^{m_{1}} \partial x_{2}^{m_{2}} \partial x_{3}^{m_{3}}} (\mathbf{x}, t)$$
(21)

Then, using the same potential theory that was used in equation (14), we obtain

$$\frac{\partial^{m_1+m_2+m_3} p(\mathbf{x},t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{1}{|\mathbf{x} - \mathbf{x}'|} \frac{\partial^{m_1+m_2+m_3} Q(\mathbf{x}',t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} d^3 \mathbf{x}'$$
(22)

We now differentiate equation (13) m_1 times with respect to x_1 , m_2 times with respect to x_2 , and m_3 times with respect to x_3 to obtain

$$\frac{\partial^{m_1+m_2+m_3}Q(\mathbf{x},t)}{\partial x_1^{m_1}\partial x_2^{m_2}\partial x_3^{m_3}} = \sum_{j=0}^{3} \sum_{k=0}^{3} \sum_{\alpha=0}^{m_1} \sum_{\beta=0}^{m_2} \sum_{\gamma=0}^{m_3} \binom{m_1}{\alpha} \binom{m_2}{\beta} \binom{m_3}{\gamma}$$
(23)

$$\times \frac{\partial^{m_1+m_2+m_3-\alpha-\beta-\gamma+1} u_j(\mathbf{x},t)}{\partial x_1^{m_1-\alpha} \partial x_2^{m_2-\beta} \partial x_3^{m_3-\gamma} \partial x_k} \frac{\partial^{\alpha+\beta+\gamma+1} u_k(\mathbf{x},t)}{\partial x_1^{\alpha} \partial x_2^{\beta} \partial x_3^{\gamma} \partial x_j}$$

where we have used the Leibnitz rule for determining higher derivatives of the product of two functions. The quantities in parentheses to the right of the summation signs are binomial coefficients. Since, by hypothesis, each of the derivatives on the right-hand side of equation (23) approaches zero as $1/(|\mathbf{x}| + a)^{\kappa}$ as $|\mathbf{x}|$ increases, this equation implies

$$\left| \frac{\partial^{m_1 + m_2 + m_3} Q(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right| \le \frac{a^{2\kappa}}{(|\mathbf{x}| + a)^{2\kappa}} B[m_1, m_2, m_3](t) = \frac{a^{2\kappa}}{(|\mathbf{x}| + a)^{2\kappa}} B(t) \quad (24)$$

where

$$B(t) = B[m_1, m_2, m_3](t) = \sum_{j=i}^{3} \sum_{k=1}^{3} \sum_{\alpha=0}^{m_1} \sum_{\beta=0}^{m_2} \sum_{\gamma=0}^{m_3} {m_1 \choose \alpha} {m_2 \choose \beta} {m_3 \choose \gamma}$$

$$\times A_j[m_1 - \alpha, m_2 - \beta, m_3 - \gamma, k](t) A_k[\alpha, \beta, \gamma; j](t)$$
(25)

and the $A[m_1, m_2, m_3; j](t)$ functions are defined in inequalities (19) and (20). Taking the absolute value of both sides of equation (22) and using the triangle inequality, we have

$$\left| \frac{\partial^{m_1+m_2+m_3} p(\mathbf{x},t)}{\partial^{m_1} x_1 \partial^{m_2} x_2 \partial^{m_3} x_3} \right| \leq \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{1}{|\mathbf{x} - \mathbf{x}'|} \left| \frac{\partial^{m_1+m_2+m_3} Q}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} (\mathbf{x}',t) \right| d^3 \mathbf{x}'
\leq \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{1}{|\mathbf{x} - \mathbf{x}'|} \frac{a^{2\kappa} B(t)}{(|\mathbf{x}'| + a)^{2\kappa}} d^3 \mathbf{x}'$$
(26)

Expressing the integral on the right-hand side of this inequality in spherical coordinates, we write

$$\left| \frac{\partial^{m_1 + m_2 + m_3} p(\mathbf{x}, t)}{\partial^{m_1} x_1 \partial^{m_2} x_2 \partial^{m_3} x_3} \right| \le \frac{1}{4\pi} B(t) \int_0^\infty \int_0^\pi \int_0^{2\pi} \frac{a^{2\kappa}}{(r' + a)^{2\kappa}} \frac{r'^2 \sin\theta' \ d\phi' d\theta' dr'}{\left[r^2 + r'^2 - 2rr' \cos\theta'\right]^{1/2}}$$
(27)

Performing the integration over ϕ and making the change of variable $v' = \cos \theta'$ gives us

$$\left| \frac{\partial^{m_1 + m_2 + m_3} p(\mathbf{x}, t)}{\partial^{m_1} x_1 \partial^{m_2} x_2 \partial^{m_3} x_3} \right| \leq \frac{1}{2} B(t) \int_0^\infty \int_{-1}^1 \frac{a^{2\kappa}}{(r' + a)^{2\kappa}} \frac{r'^2}{\left[r^2 + r'^2 - 2rr'v'\right]^{1/2}} dv' dr' \quad (28)$$

We now carry out the integration over v' to obtain

$$\left| \frac{\partial^{m_1+m_2+m_3} p(\mathbf{x},t)}{\partial^{m_1} x_1 \partial^{m_2} x_2 \partial^{m_3} x_3} \right| \leq \frac{1}{2} B(t) \int_0^\infty \frac{a^{2\kappa}}{(r'+a)^{2\kappa}} \frac{\left[r^2 + r'^2 - 2rr'v' \right]^{1/2} r'^2}{-rr'} \Big|_{-1}^1 dr'
= \frac{1}{2} B(t) \int_0^\infty \frac{a^{2\kappa}}{(r'+a)^{2\kappa}} \frac{r + r' - |r - r'|}{r} r' dr' \qquad (29)
= \frac{B(t)}{r} \int_0^r \frac{a^{2\kappa}}{(r'+a)^{2\kappa}} r'^2 dr' + B(t) \int_r^\infty \frac{a^{2\kappa}}{(r'+a)^{2\kappa}} \frac{r'^2}{r'} dr'$$

Since r' > r in the second term on the right-hand side of this inequality, we have

$$|h| \leq \frac{B(t)}{r} \int_0^r \frac{a^{2\kappa}}{(r'+a)^{2\kappa}} r'^2 dr' + \frac{B(t)}{r} \int_r^\infty \frac{a^{2\kappa}}{(r'+a)^{2\kappa}} r'^2 dr'$$

$$= \frac{B(t)}{r} \int_0^\infty \frac{a^{2\kappa}}{(r'+a)^{2\kappa}} r'^2 dr' = \frac{a^3 B(t)}{(2\kappa - 3)(\kappa - 1)(2\kappa - 1) r}$$
(30)

From this inequality, we see that p and its spatial derivatives approach zero at least as fast as 1/r as r gets larger.

Let us now show that the spatial derivatives of ∇p must approach zero as $1/r^2$ as $r \to \infty$. Differentiating equation (20) with respect to x_i (i = 1, 2, 3), we have

$$\frac{\partial h}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\frac{\partial^{m_1 + m_2 + m_3} p}{\partial^{m_1} x_1 \partial^{m_2} x_2 \partial^{m_3} x_3} \right) = \frac{\partial^{m_1 + m_2 + m_3}}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \left(\frac{\partial p}{\partial x_i} \right)
= -\frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{x_i - x_i'}{|\mathbf{x} - \mathbf{x}'|^3} \frac{\partial^{m_1 + m_2 + m_3} Q}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} (\mathbf{x}', t) d^3 \mathbf{x}'$$
(31)

where we have defined the function h as

$$h(\mathbf{x},t) = h[m_1, m_2, m_3](\mathbf{x},t) = \frac{\partial^{m_1 + m_2 + m_3} p}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}}(\mathbf{x},t)$$
(32)

Thus far, we have not made any assumptions about the orientation of the coordinate axises. Therefore, let us define our coordinate axises such that the point \mathbf{x} is on the positive x_3 axis. In this case, the radial direction is along $+x_3$, and we may write

$$\mathbf{x} = r \mathbf{e}_3 = r \mathbf{e}_r$$
 or equivalently $x_1 = 0, x_2 = 0, x_3 = r$ (33)-(35)

where \mathbf{e}_3 and \mathbf{e}_r are unit vectors in the x_3 and radial directions respectively. For the primed coordinates, we have

$$x'_1 = r' \sin \theta' \cos \phi', \ x'_2 = r' \sin \theta' \sin \phi', \ x'_3 = r' \cos \theta'$$
 (36)-(38)

Inserting equations (33)-(38) into (31) and setting i = 3, we obtain

$$\frac{\partial h}{\partial x_3}(\mathbf{x},t) = -\frac{1}{4\pi} \int_0^\infty \int_0^\pi \int_0^{2\pi} \frac{\partial^{m_1 + m_2 + m_3} Q}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} (r' \sin \theta' \cos \phi', r' \sin \theta' \sin \phi', r' \cos \theta', t)
\times \frac{(r - r' \cos \theta') r'^2 \sin \theta'}{\left[r^2 + r'^2 - 2rr' \cos \theta'\right]^{3/2}} d\phi' d\theta' dr' = \frac{\partial h}{\partial r}$$
(39)

where we have used equations (36)-(38) to express the (Cartesian) components of \mathbf{x}' in terms of the primed spherical coordinates. We will later show that this radial component of ∇h is in fact the dominant component in the limit of large values of

 $|\mathbf{x}|$. Taking the absolute value of both sides of equation (39) and using the triangle inequality gives us

$$\left| \frac{\partial h}{\partial r} \right| \leq \frac{1}{4\pi} \int_0^\infty \int_0^\pi \int_0^{2\pi} \left| \frac{\partial^{m_1 + m_2 + m_3} Q}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} (r' \sin \theta' \cos \phi', r' \sin \theta' \sin \phi', r' \cos \theta', t) \right| \times \left| \frac{(r - r' \cos \theta') r'^2 \sin \theta'}{\left[r^2 + r'^2 - 2rr' \cos \theta' \right]^{3/2}} \right| d\phi' d\theta' dr'$$

$$(40)$$

Inserting inequality (24) into (40), we then have

$$\left| \frac{\partial h}{\partial r}(\mathbf{x}, t) \right| \leq \frac{1}{4\pi} \int_0^\infty \int_0^\pi \int_0^{2\pi} \frac{a^{2\kappa} B(t)}{(r' + a)^{2\kappa}} \frac{|r - r' \cos \theta'| r'^2 \sin \theta'}{\left[r^2 + r'^2 - 2rr' \cos \theta'\right]^{3/2}} d\phi' d\theta' dr' \qquad (41)$$

Performing the integration with respect to ϕ' in this inequality, we obtain

$$\left| \frac{\partial h}{\partial r}(\mathbf{x}, t) \right| \leq \frac{1}{2} B(t) \int_0^\infty \int_0^\pi \frac{a^{2\kappa}}{(r' + a)^{2\kappa}} \frac{|r - r' \cos \theta'| r'^2 \sin \theta'}{\left[r^2 + r'^2 - rr' \cos \theta'\right]^{3/2}} d\theta' dr' \qquad (42)$$

If we define

$$L(r) = \frac{1}{2} \int_0^\infty \frac{a^{2\kappa}}{(r'+a)^{2\kappa}} J(r,r') dr'$$
 (43)

where

$$J(r,r') = \int_0^{\pi} \frac{|r - r'\cos\theta'| \, r'^2 \sin\theta'}{\left[r^2 + r'^2 - 2rr'\cos\theta'\right]^{3/2}} d\theta' \tag{44}$$

Then we may write inequality (42) as

$$\left| \frac{\partial h}{\partial r}(\mathbf{x}, t) \right| \le B(t) L(r) = \frac{1}{2} B(t) \int_0^\infty \frac{a^{2\kappa}}{(r' + a)^{2\kappa}} J(r, r') dr' \tag{45}$$

Let us now evaluate the integral in this equation. We first consider the case of r' < r. In this case equation (44) can be written as

$$J(r,r') = \int_{-1}^{1} \frac{r'^{2}(r-r'v')}{\left[r^{2}+r'^{2}-2rr'v'\right]^{3/2}} dv = \frac{r'^{2}}{2r} \int_{-1}^{1} \frac{2r^{2}-2rr'v'}{\left[r^{2}+r'^{2}-2rr'v'\right]^{3/2}} dv'$$

$$= \frac{r'^{2}}{2r} \left[\int_{-1}^{1} \frac{r^{2}+r'^{2}-2rr'v'}{\left[r^{2}+r'^{2}-2rr'v'\right]^{3/2}} dv' + \int_{-1}^{1} \frac{r^{2}-r'^{2}}{\left[r^{2}+r'^{2}-2rr'v'\right]^{3/2}} dv' \right]$$

$$= \frac{r'^{2}}{2r} \left[\int_{-1}^{1} \left[r^{2}+r'^{2}-2rr'v'\right]^{-1/2} dv' + \int_{-1}^{1} \frac{r^{2}-r'^{2}}{\left[r^{2}+r'^{2}-2rr'v'\right]^{3/2}} dv' \right]$$

$$= \frac{r'^{2}}{2r} \left[\left(-\frac{\left[r^{2}+r'^{2}-2rr'v'\right]^{1/2}}{rr'} \right) |_{-1}^{1} + \left(\frac{r^{2}-r'^{2}}{rr'} \left[r^{2}+r'^{2}-2rr'v'\right]^{-1/2} \right) |_{-1}^{1} \right]$$

$$= \frac{r'^{2}}{2r} \left[2\left(\frac{r+r'-(r-r')}{rr'} \right) \right] = 2\frac{r'^{2}}{r^{2}}$$

where we have made the change of variable $v' = \cos \theta'$. For r < r', the factor $r - r' \cos \theta'$, whose absolute value appears in equations (42)-(45), is less than zero for values of $v' = \cos \theta' > r/r'$. Therefore, we must change the sign of the integrand

at v' = r/r' when evaluating J(r, r'). This function for r < r' then becomes

$$J(r,r') = \int_{-1}^{r/r'} \frac{r'^{2}(r-r'v')}{\left[r^{2}+r'^{2}-2rr'v'\right]^{3/2}} dv' - \int_{r/r'}^{1} \frac{r'^{2}(r-r'v')}{\left[r^{2}+r'^{2}-2rr'v'\right]^{3/2}} dv'$$

$$= \frac{r'^{2}}{2r} \left[\left(-\frac{\left[r^{2}+r'^{2}-2rr'v'\right]^{1/2}}{rr'} \right) |_{-1}^{r/r'} + \left(\frac{r^{2}-r'^{2}}{rr'} \left[r^{2}+r'^{2}-2rr'v'\right]^{-1/2} \right) |_{-1}^{r/r'} \right]$$

$$- \frac{r'^{2}}{2r} \left[-\left(\frac{\left[r^{2}+r'^{2}-2rr'v'\right]^{1/2}}{rr'} \right) |_{r/r'}^{1/2} + \left(\frac{r^{2}-r'^{2}}{rr'} \left[r^{2}+r'^{2}-2rr'v'\right]^{-1/2} \right) |_{r/r'}^{1/r} \right]$$

$$= 2\frac{r'^{2}}{r^{2}} \left(1 - \sqrt{1 - \left(\frac{r}{r'}\right)^{2}} \right)$$

Let us check continuity of this function near r=0 by evaluating

$$\lim_{r \to 0} J(r, r') = \lim_{r \to 0} 2 \frac{r'^2}{r^2} \left(1 - \sqrt{1 - \left(\frac{r}{r'}\right)^2} \right) = \lim_{s \to 1} 2 \frac{1 - s}{1 - s^2} = \lim_{s \to 1} \frac{2}{1 + s} = 1$$
 (48)

where we have made the change of variable

$$s = \sqrt{1 - \left(\frac{r}{r'}\right)^2}$$

Since J(r, r') has a finite limit as r approaches zero for any value of r' > r, this function is continuous and therefore can be integrated with respect to r near r = 0. From equations (46) and (47), we see that

$$J(r,r') \le 2\frac{{r'}^2}{r^2} \tag{49}$$

if either r < r' or r > r'. Inserting inequality (49) into equation (43) we obtain

$$L(r) \leq \frac{1}{r^2} \int_0^\infty \frac{a^{2\kappa} r'^2}{(r'+a)^{2\kappa}} dr' = \frac{a^{2\kappa}}{(2\kappa-3)(\kappa-1)(2\kappa-1) r^2}$$
 (50)

which shows the $1/r^2$ asymptotic behavior of L(r) in the limit as $r \to \infty$. At first sight of inequality (50), one might believe that it implies a singularity exists at r = 0. This "singularity", however, is merely an artifact of our gross over-estimation of J(r,r') near r = 0. As we have already shown, J(r,r') remains continuous and integrable near r = 0. Inserting this result into inequality (45) then gives us

$$\left| \frac{\partial h}{\partial r}(\mathbf{x}, t) \right| \le B(t)L(r) \le \frac{a^{2\kappa} B(t)}{(2\kappa - 3)(\kappa - 1)(2\kappa - 1) r^2} = \frac{a^{2\kappa} H(\kappa) B(t)}{r^2} \tag{51}$$

where we have defined

$$H(\kappa) = \frac{1}{(2\kappa - 3)(\kappa - 1)(2\kappa - 1)}$$

Thus, we see that $|\partial h/\partial r|$ approaches zero as $1/r^2$ as $r \to \infty$, and again the left-hand side of this inequality remains bounded and continuous as $r \to 0$.

From inequality (24), we see that the non-homogeneous term on the right-hand side of equation (21) approaches zero as $1/r^{2\kappa}$ as r increases. According to inequality (30), however, h approaches zero as 1/r as $r \to \infty$. Therefore, the non-homogeneous term in equation (21) can in general be made arbitrarily small compared with the function h and its derivatives by choosing r sufficiently large. This implies that h must approach a harmonic function (ie. solution of Laplace's equation $\nabla^2 h = 0$) in the limit as $r \to \infty$. Let h_L be the (harmonic) function that describes the asymptotic behavior of h as $r \to \infty$. That is h_L is the function to

which h approaches as r increases. Since h_L is a harmonic function that approaches zero as $r \to \infty$, it can be written as

$$h_L(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} D_{lm} r^{-(l+1)} Y_{lm}(\theta,\phi)$$
 (52)

where the D_{lm} are constants and the Y_{lm} are the spherical harmonics. Taking the gradient of both sides of this equation, we have

$$\nabla h_L = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} D_{lm} r^{-(l+2)} \left[-(l+1) Y_{lm}(\theta, \phi) \mathbf{e}_r + \frac{\partial Y_{lm}}{\partial \theta} (\theta, \phi) \mathbf{e}_{\theta} + \frac{1}{\sin \theta} \frac{\partial Y_{lm}}{\partial \phi} (\theta, \phi) \mathbf{e}_{\phi} \right]$$
(53)

Examining equations (52) and (53), we see that the dominate terms (at large values of r) in h_L and ∇h_L are those with l=m=0. Therefore, the asymptotic behavior of h and ∇h can be expressed as

$$h \to \frac{D_{00}}{\sqrt{4\pi}r}$$
 and $\nabla h \to \frac{D_{00}}{\sqrt{4\pi}r^2} \mathbf{e}_r$ (54),(55)

in the limit as $r \to \infty$, with a properly chosen constant D_{00} . Also, note that equations (54) and (55) are consistent with inequalities (29) and (51) respectively for large values of r

From equation (55), we see that in the limit as $r = |\mathbf{x}| \to \infty$, ∇h approaches a vector function with only a radial component. This implies that there must be a value r_1 such that for $r > r_1$, we have

$$|\nabla h \cdot \mathbf{e}_{\theta}| < |\nabla h \cdot \mathbf{e}_{r}|, \text{ and } |\nabla h \cdot \mathbf{e}_{\phi}| < |\nabla h \cdot \mathbf{e}_{r}|$$
 (56),(57)

where \mathbf{e}_{θ} and \mathbf{e}_{ϕ} are unit vectors in the polar and azimuthal directions respectively. Therefore $\nabla h \cdot \mathbf{e}_r$, $\nabla h \cdot \mathbf{e}_{\theta}$, and $\nabla h \cdot \mathbf{e}_{\phi}$ are the components of ∇h in the radial, polar, and azimuthal directions respectively. The absolute value of ∇h is given by

$$|\nabla h| = \sqrt{(\nabla h \cdot \mathbf{e}_r)^2 + (\nabla h \cdot \mathbf{e}_\theta)^2 + (\nabla h \cdot \mathbf{e}_\phi)^2}$$
(58)

Inserting (56) and (57) into (58), we have

$$|\nabla h| = \sqrt{(\nabla h \cdot \mathbf{e}_r)^2 + (\nabla h \cdot \mathbf{e}_r)^2 + (\nabla h \cdot \mathbf{e}_r)^2} \le \sqrt{3(\nabla h \cdot \mathbf{e}_r)^2}$$

$$= \sqrt{3}|\nabla h \cdot \mathbf{e}_r| = \sqrt{3} \left| \frac{\partial h}{\partial r} \right|$$
(59)

for $r > r_1$. Let us define $r_0 = \max[r_1, a]$. We then have from inequalities (51) and (59)

$$|\nabla h| \leq \sqrt{3} \left| \frac{\partial h}{\partial r} \right| \leq \frac{\sqrt{3} a^{2\kappa} H(\kappa) B(t)}{r^2} = \frac{a^2}{(2r)^2} 4\sqrt{3} a^{2(\kappa - 1)} H(\kappa) B(t)$$

$$\leq \frac{a^2}{(r+a)^2} 4\sqrt{3} a^{2(\kappa - 1)} H(\kappa) B(t)$$
(60)

for $r > r_0$. If $r < r_0$, we define $|\nabla h|_{\max}(t)$ as the maximum of ∇h over the radial interval $0 \le r \le r_0$ at time t. Then we may write

$$|\nabla h|(r+r_0)^2 \leq 4r_0^2|\nabla h|_{\max}(t) \tag{61}$$

which implies

$$|\nabla h| \leq \frac{4r_0^2|\nabla h|_{\max}(t)}{(r+r_0)^2} \leq \frac{4r_0^2|\nabla h|_{\max}(t)}{(r+a)^2} = \frac{a^2}{(r+a)^2} \frac{4r_0^2|\nabla h|_{\max}(t)}{a^2}$$
(62)

²This result is analogous to the dominance of the monopole term in the far-field (ie. large values of $|\mathbf{x}|$) in an electrostatics problem (See Ref. 15, Chapter 4). In such a problem, h corresponds to the electrostatic potential, ∇h corresponds to the electric field, and the right-hand side of equation (20) corresponds to the charge density.

for $r < r_0$. Combining our results from inequalities (60) and (62), we have

$$|\nabla h| \le \frac{a^2}{(r+a)^2} \operatorname{PG}[m_1, m_2, m_3](t) = \frac{a^2}{(|\mathbf{x}|+a)^2} \operatorname{PG}[m_1, m_2, m_3](t)$$
 (63)

where we have defined

$$PG[m_1, m_2, m_3](t) = 4 \max \left[\sqrt{3} a^{2(\kappa - 1)} H(\kappa) B(t), \frac{r_0^2 |\nabla h|_{\max}(t)}{a^2} \right]$$
 (64)

and B(t) is given in equation(25). Since $|\partial h/\partial x_i| \leq |\nabla h|$ for i = 1, 2, 3, inequality (63) implies that

$$\left| \frac{\partial^{m_1+m_2+m_3+1} p(\mathbf{x},t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3} \partial x_i} \right| \leq \left| \nabla \left(\frac{\partial^{m_1+m_2+m_3} p(\mathbf{x},t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right) \right| \leq \frac{a^2}{(|\mathbf{x}|+a)^2} \operatorname{PG}[m_1, m_2, m_3](t)$$
(65)

and since $\kappa \leq 2$, we can write

$$\left| \frac{\partial^{m_1 + m_2 + m_3 + 1} p(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3} \partial x_i} \right| \leq \left| \nabla \left(\frac{\partial^{m_1 + m_2 + m_3} p(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right) \right| \leq \frac{a^{\kappa}}{(|\mathbf{x}| + a)^{\kappa}} \operatorname{PG}[m_1, m_2, m_3](t)$$
(66)

Therefore, the components of ∇p and their spatial derivatives to all order satisfy the required boundary conditions.

Spatial Dependence of Solution. Before establishing existence of a solution of the given problem, let us consider the maximum spatial profiles we would expect such a solution and its derivatives to have. We start by differentiating the Navier-Stokes equation (4b) m_1 times with respect to x_1 , m_2 times with respect to x_2 , and m_3 times with respect to x_3 to obtain

$$\frac{\partial}{\partial t} \left(\frac{\partial^{m_1 + m_2 + m_3} u_i(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right) = \nu \sum_{k=1}^3 \frac{\partial^{m_1 + m_2 + m_3 + 2} u_i(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3} \partial x_k^2} - \frac{\partial^{m_1 + m_2 + m_3 + 1} p(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3} \partial x_i}$$
(67)

$$-\sum_{k=1}^{3}\sum_{\alpha=0}^{m_1}\sum_{\beta=0}^{m_2}\sum_{\gamma=0}^{m_3}\binom{m_1}{\alpha}\binom{m_2}{\beta}\binom{m_3}{\gamma}\frac{\partial^{m_1+m_2+m_3-\alpha-\beta-\gamma}u_k(\mathbf{x},t)}{\partial x_1^{m_1-\alpha}\partial x_2^{m_2-\beta}\partial x_3^{m_3-\gamma}}\frac{\partial^{\alpha+\beta+\gamma+1}u_i(\mathbf{x},t)}{\partial x_1^{\alpha}\partial x_2^{\beta}\partial x_3^{\gamma}\partial x_k}$$

Next, we take the absolute value of both sides of this equation and use the triangle inequality to obtain

$$\left| \frac{\partial}{\partial t} \left(\frac{\partial^{m_1 + m_2 + m_3} u_i(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right) \right| \leq \nu \sum_{k=1}^3 \left| \frac{\partial^{m_1 + m_2 + m_3 + 2} u_i(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3} \partial x_k^2} \right| + \left| \frac{\partial^{m_1 + m_2 + m_3 + 1} p(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3} \partial x_k} \right|$$

$$(68)$$

$$+\sum_{k=1}^{3}\sum_{\alpha=0}^{m_{1}}\sum_{\beta=0}^{m_{2}}\sum_{\gamma=0}^{m_{3}}\binom{m_{1}}{\alpha}\binom{m_{2}}{\beta}\binom{m_{3}}{\gamma}\left|\frac{\partial^{m_{1}+m_{2}+m_{3}-\alpha-\beta-\gamma}u_{k}(\mathbf{x},t)}{\partial x_{1}^{m_{1}-\alpha}}\left|\frac{\partial^{\alpha+\beta+\gamma+1}u_{i}(\mathbf{x},t)}{\partial x_{1}^{\alpha}\partial x_{2}^{\beta}\partial x_{3}^{\gamma}\partial x_{k}}\right|\right|$$

Inserting inequalities (17)-(20) and (66) into (68) then gives us

$$\left| \frac{\partial}{\partial t} \left(\frac{\partial^{m_1 + m_2 + m_3} u_i(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right) \right| \leq \nu \frac{a^{\kappa}}{(|\mathbf{x}| + a)^{\kappa}} L_i[m_1, m_2, m_3](t)$$

$$(69)$$

+
$$\frac{a^{\kappa}}{(|\mathbf{x}| + a)^{\kappa}} \operatorname{PG}[m_1, m_2, m_3](t) + \frac{a^{2\kappa}}{(|\mathbf{x}| + a)^{2\kappa}} \operatorname{TT}_i[m_1, m_2, m_3](t)$$

Where we have defined

$$L_{i}[m_{1}, m_{2}, m_{3}](t) = A_{i}[m_{1} + 2, m_{2}, m_{3}; 0](t) + A_{i}[m_{1}, m_{2} + 2, m_{3}; 0](t)$$

$$+ A_{i}[m_{1}, m_{2}, m_{3} + 2; 0](t)$$

$$(70)$$

and

$$TT_{i}[m_{1}, m_{2}, m_{3}](t) = \sum_{k=1}^{3} \sum_{\alpha=0}^{m_{1}} \sum_{\beta=0}^{m_{2}} \sum_{\gamma=0}^{m_{3}} {m_{1} \choose \alpha} {m_{2} \choose \beta} {m_{3} \choose \gamma}$$

$$\times A_{k}[m_{1} - \alpha, m_{2} - \beta, m_{3} - \gamma, 0](t) A_{i}[\alpha, \beta, \gamma, k](t)$$

$$(71)$$

Now since $a/(|\mathbf{x}| + a) < 1$, we can replace the 2κ exponent in the last term on the right-hand side of inequality (69) with κ . This gives us

$$\left| \frac{\partial}{\partial t} \left(\frac{\partial^{m_1 + m_2 + m_3} u_i(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right) \right| \le \frac{a^{\kappa}}{(|\mathbf{x}| + a)^{\kappa}} F_i[m_1, m_2, m_3](t) \tag{72}$$

and since

$$\frac{\partial}{\partial t} \left| \frac{\partial^{m_1 + m_2 + m_3} u_i(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right| \leq \left| \frac{\partial}{\partial t} \left(\frac{\partial^{m_1 + m_2 + m_3} u_i(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right) \right|$$
(73)

we have from inequality (72)

$$\frac{\partial}{\partial t} \left| \frac{\partial^{m_1 + m_2 + m_3} u_i(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right| \le \frac{a^{\kappa}}{(|\mathbf{x}| + a)^{\kappa}} F_i[m_1, m_2, m_3](t) \tag{74}$$

From this inequality, we see that the absolute values of the $u_i(\mathbf{x},t)$ and their spatial derivatives must be differentiable with respect to time at all time values t for which the $F_i[m_1, m_2, m_3](t)$ functions remain finite. Therefore, we can integrate both sides of this inequality with respect to time to obtain

$$\left| \frac{\partial^{m_1 + m_2 + m_3} u_i(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right| \le \frac{a^{\kappa}}{(|\mathbf{x}| + a)^{\kappa}} \left[\int_0^t F_i[m_1, m_2, m_3](t') dt' + C_{mi}^0 \right]$$
(75)

where $m = m_1 + m_2 + m_3$ and the C_{mi}^0 are the coefficients from the statement of the main theorem used in defining the initial values for the $u_i(\mathbf{x}, t)$ functions. From this inequality, we see that a smooth solution will exist for the u_i and their spatial derivatives if the F_i functions remain finite for finite values of t. Also, note that

$$\int_{0}^{t} F_{i}[m_{1}, m_{2}, m_{3}](t') dt' \leq \max_{m=m_{1}+m_{2}+m_{3}} \int_{0}^{t} F_{i}[m_{1}, m_{2}, m_{3}](t') dt'$$
 (76)

where the right-hand side of this inequality denotes the maximum of the time integrals of the $F_i[m_1, m_2, m_3](t)$ functions such that $m = m_1 + m_2 + m_3$. Inserting inequality (76) into (75), we obtain

$$\left| \frac{\partial^{m_1 + m_2 + m_3} u_i(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right| \leq \frac{a^{\kappa}}{(|\mathbf{x}| + a)^{\kappa}} \left[\max_{m = m_1 + m_2 + m_3} \int_0^t F_i[m_1, m_2, m_3](t') dt' + C_{mi}^0 \right]$$
(77)

Therefore, if we set

$$C_{mi}(t) = \max_{m=m_1+m_2+m_3} \int_0^t F_i[m_1, m_2, m_3](t') dt' + C_{mi}^0$$
 (78)

Then we have

$$\left| \frac{\partial^{m_1 + m_2 + m_3} u_i(\mathbf{x}, t)}{\partial x_1^{m_1} \partial x_2^{m_2} \partial x_3^{m_3}} \right| \le \frac{a^{\kappa}}{(|\mathbf{x}| + a)^{\kappa}} C_{mi}(t)$$

$$(79)$$

Since the quantity on the right-hand side of inequality (78) depends on the sum only of the m_1, m_2, m_3 indices and not the indices individually, the $C_{mi}(t)$ functions defined in equation (79) satisfy the requirements of those in the main theorem.

Thus far, we have shown that a solution $\mathbf{u}(\mathbf{x},t)$ that is initially smooth (according to the hypothesis of the main theorem) will remain smooth for as long as it exists.

Also, we have shown that for all times t for which a smooth fluid velocity \mathbf{u} exists, a smooth scalar pressure p also exists. However, we have not yet shown that such a solution exists for all t>0. Until proven otherwise, we must recognize the possibility of a "smooth blowup" occurring where the fluid velocity reaches infinite values at some point in finite time.

Existence of Pressure Gradient Integral over Time. Before showing that the fluid velocity \mathbf{u} must remain finite for finite time, we must first establish that the time integral of the scalar pressure gradient ∇p exists and remains finite over any finite time interval. We start with the original Navier-Stokes equation.

$$\frac{\partial u_i}{\partial t} = \nu \nabla^2 u_i - \sum_{k=1}^3 u_k \frac{\partial u_i}{\partial x_k} - \frac{\partial p}{\partial x_i}$$
 (4b)

Multiplying both sides of this equation by u_i and summing over i, we obtain

$$\sum_{i=1}^{3} u_i \frac{\partial u_i}{\partial t} = \nu \sum_{i=1}^{3} u_i \nabla^2 u_i - \sum_{i=1}^{3} \sum_{k=1}^{3} u_i u_k \frac{\partial u_i}{\partial x_k} - \sum_{i=1}^{3} u_i \frac{\partial p}{\partial x_i}$$
(80)

Since

$$\frac{\partial}{\partial t} \left(\frac{1}{2} u_i^2 \right) = u_i \frac{\partial u_i}{\partial t}$$

Equation (80) can be written as

$$\sum_{i=1}^{3} \frac{\partial}{\partial t} \left(\frac{1}{2} u_i^2 \right) = \nu \sum_{i=1}^{3} u_i \nabla^2 u_i - \sum_{i=1}^{3} \sum_{k=1}^{3} u_k \frac{\partial}{\partial x_k} \left(\frac{1}{2} u_i^2 \right) - \sum_{i=1}^{3} u_i \frac{\partial p}{\partial x_i}$$
(81)

From elementary vector analysis, we have

$$\nabla \cdot (u_i \nabla u_i) = u_i \nabla \cdot (\nabla u_i) + \nabla u_i \cdot \nabla u_i = u_i \nabla^2 u_i + \nabla u_i \cdot \nabla u_i$$

and therefore

$$u_i \nabla^2 u_i = \nabla \cdot (u_i \nabla u_i) - \nabla u_i \cdot \nabla u_i = \nabla^2 \left(\frac{1}{2} u_i^2\right) - \nabla u_i \cdot \nabla u_i$$
 (82)

Inserting this result into equation (81), we obtain

$$\sum_{i=1}^{3} \frac{\partial}{\partial t} \left(\frac{1}{2} u_i^2 \right) = \nu \sum_{i=1}^{3} \nabla^2 \left(\frac{1}{2} u_i^2 \right) - \nu \sum_{i=1}^{3} \nabla u_i \cdot \nabla u_i - \sum_{i=1}^{3} \sum_{k=1}^{3} u_k \frac{\partial}{\partial x_k} \left(\frac{1}{2} u_i^2 \right) - \sum_{i=1}^{3} u_i \frac{\partial p}{\partial x_i}$$
(83)

If we define the energy density of fluid motion K as

$$K(\mathbf{x},t) = \frac{1}{2} \sum_{i=1}^{3} (u_i(\mathbf{x},t))^2 = \frac{1}{2} \mathbf{u}(\mathbf{x},t) \cdot \mathbf{u}(\mathbf{x},t)$$
 (84)

equation (83) can be written as

$$\frac{\partial K}{\partial t} = \nu \nabla^2 K - \nu \sum_{i=1}^3 \nabla u_i \cdot \nabla u_i - \sum_{i=1}^3 u_i \frac{\partial K}{\partial x_i} - \sum_{i=1}^3 u_i \frac{\partial p}{\partial x_i}$$

or equivalently

$$\frac{\partial K}{\partial t} = \nu \nabla^2 K - \nu \sum_{i=1}^3 \nabla u_i \cdot \nabla u_i - \mathbf{u} \cdot \nabla K - \mathbf{u} \cdot \nabla p$$

$$= \nu \nabla \cdot (\nabla K) - \nu \sum_{i=1}^3 (\nabla u_i \cdot \nabla u_i) - \nabla \cdot [(K+p)\mathbf{u}]$$
(85)

where we have used the fact that $\nabla \cdot \mathbf{u} = 0$ in the last step. Let us now define the total energy of fluid motion as

$$E(t) = \int_{\mathbb{D}^3} K(\mathbf{x}, t) d^3 \mathbf{x}$$
 (86)

The initial value E_0 of this function was shown to be finite in equation (8). Let us examine the evolution of the function E(t). Integrating equation (85) over \mathbb{R}^3 and using (86) gives us

$$\frac{dE}{dt} = \nu \int_{\mathbb{R}^3} \nabla \cdot (\nabla K) d^3 \mathbf{x} - \nu \sum_{i=1}^3 \int_{\mathbb{R}^3} (\nabla u_i \cdot \nabla u_i) d^3 \mathbf{x} - \int_{\mathbb{R}^3} \nabla \cdot [(p+K)\mathbf{u})] d^3 \mathbf{x}$$
(87)

We now show that the first and third terms on the right-hand side of equation (87) vanish. Integrating equation (86) over the spherical region in \mathbb{R}^3 defined by $|\mathbf{x}| \leq R$ we have

$$\frac{\partial}{\partial t} \int_{|\mathbf{x}| \le R} K(\mathbf{x}, t) d^{3}\mathbf{x} = \nu \int_{|\mathbf{x}| \le R} \nabla \cdot (\nabla K) d^{3}\mathbf{x} - \nu \sum_{i=1}^{3} \int_{|\mathbf{x}| \le R} (\nabla u_{i} \cdot \nabla u_{i}) d^{3}\mathbf{x} - \int_{|\mathbf{x}| \le R} \nabla \cdot [(p+K)\mathbf{u}] d^{3}\mathbf{x} \tag{88}$$

Applying the divergence theorem to the first and third terms on the right-hand side of equation (88), we have

$$\frac{\partial}{\partial t} \int_{|\mathbf{x}| \le R} K(\mathbf{x}, t) d^3 \mathbf{x} = \nu \int_{|\mathbf{x}| = R} \nabla K \cdot \mathbf{e}_r dS - \nu \sum_{i=1}^3 \int_{|\mathbf{x}| \le R} (\nabla u_i \cdot \nabla u_i) d^3 \mathbf{x}
- \int_{|\mathbf{x}| = R} (p + K) \mathbf{u} \cdot \mathbf{e}_r dS$$
(89)

where \mathbf{e}_r is the unit vector in the radial direction. Differentiating both sides of equation (84) with respect to x_i gives us

$$\frac{\partial K}{\partial x_j}(\mathbf{x},t) = \sum_{i=1}^3 u_i(\mathbf{x},t) \frac{\partial u_i}{\partial x_j}(\mathbf{x},t)$$
(90)

Since the function \mathbf{u} must be consistent with inequality (79), we take the absolute value of both sides of equation (90) and use inequality (79) along with the triangle inequality to obtain

$$\left| \frac{\partial K}{\partial x_j}(\mathbf{x}, t) \right| \leq \sum_{i=1}^3 |u_i(\mathbf{x}, t)| \left| \frac{\partial u_i}{\partial x_j}(\mathbf{x}, t) \right|$$

$$\leq \frac{a^{2\kappa}}{(|\mathbf{x}| + a)^{2\kappa}} \sum_{i=1}^3 A_i[0, 0, 0; 0](t) A_i[0, 0, 0; j](t)$$
(91)

From this inequality, we have

$$|\nabla K(\mathbf{x},t)| \leq \sum_{i=1}^{3} \left| \frac{\partial K}{\partial x_i}(\mathbf{x},t) \right| \leq \sum_{i=1}^{3} \sum_{j=1}^{3} |u_i(\mathbf{x},t)| \left| \frac{\partial u_i}{\partial x_j}(\mathbf{x},t) \right|$$

$$\leq \frac{a^{2\kappa}}{(|\mathbf{x}|+a)^{2\kappa}} \sum_{i=1}^{3} \sum_{j=1}^{3} A_i[0,0,0;0](t) A_i[0,0,0,j](t)$$
(92)

Applying inequality (92) to the first integral on the right-hand side of equation (89) gives us

$$\left| \int_{|\mathbf{x}|=R} \nabla K \cdot \mathbf{e}_r \, dS \right| \leq \sum_{i=1}^3 \sum_{j=1}^3 A_i[0,0,0;0](t) \, A_i[0,0,0;j](t) \int_{|\mathbf{x}|=R} \frac{a^{2\kappa}}{(|\mathbf{x}|+a)^{2\kappa}} \, dS \quad (93)$$

$$= \frac{4\pi R^2 a^{2\kappa}}{(R+a)^{2\kappa}} \sum_{i=1}^3 \sum_{j=1}^3 A_i[0,0,0;0](t) \, A_i[0,0,0;j](t)$$

Taking the limit of both sides of this inequality as $R \to \infty$, we obtain

$$\lim_{R \to \infty} \int_{|\mathbf{x}| = R} \nabla K \cdot \mathbf{e}_r \, dS = 0 \tag{94}$$

From the last term on the right-hand side of equation (89), we have

$$\left| \int_{|\mathbf{x}|=R} (p+K) \, \mathbf{u} \cdot \mathbf{e}_r \, dS \right| \leq \int_{|\mathbf{x}|=R} |p+K| |\mathbf{u}| \, dS$$

$$\leq \int_{|\mathbf{x}|=R} \left(\overline{|p|}(R) + \overline{K}(R) \right) \frac{a^{\kappa} \, A \, [|\mathbf{u}|]}{(R+a)^{\kappa}} \, dS$$

$$= 4\pi R^2 \left(\overline{|p|}(R) + \overline{K}(R) \right) \frac{a^{\kappa} \, A \, [|\mathbf{u}|]}{(R+a)^{\kappa}}$$
(95)

where we have defined $\overline{|p|}(R)$ and $\overline{K}(R)$ as the average values of |p| and K respectively for $|\mathbf{x}| = R$. Also, we have defined the fluid velocity magnitude coefficient $A[|\mathbf{u}|](t)$ as

$$A[|\mathbf{u}|](t) \ = \ \sqrt{\sum_{k=1}^{3} A_{k}^{2}[0,0,0;0](t)} \quad \text{ so that } \quad |\mathbf{u}(\mathbf{x},t)| \ \leq \ \frac{a^{\kappa}}{(|\mathbf{x}|+a)^{\kappa}} \, A[|\mathbf{u}|]$$

where the $A_k[0,0,0;0](t)$ are from equation (17). In the right-hand side of inequality (95), the scalar pressure p approaches zero as 1/R as $R\to\infty$, and the kinetic energy density K approaches zero as $1/R^{2\kappa}$ as $R\to\infty$. Therefore, the first term of the right-hand side of this inequality approaches zero as $1/R^{\kappa-1}$ as $R\to\infty$, and the second term approaches zero as $1/R^{3\kappa-2}$ as $R\to\infty$. Since $\kappa>3/2$, it follows then that both terms on the right-hand side of inequality (95) vanish as $R\to\infty$. Therefore, we have

$$\lim_{R \to \infty} \int_{|\mathbf{x}| = R} (p + K) \mathbf{u} \cdot \mathbf{e}_r \, dS = 0 \tag{96}$$

Now we take the limit as $R \to \infty$ of both sides of equation (89), and use (94) and (96) to obtain

$$\frac{dE}{dt} = -\nu \sum_{i=1}^{3} \int_{\mathbb{R}^{3}} (\nabla u_{i} \cdot \nabla u_{i}) d^{3}\mathbf{x} = -\nu \sum_{i=1}^{3} \sum_{j=1}^{3} \int_{\mathbb{R}^{3}} \left(\frac{\partial u_{i}}{\partial x_{j}}(\mathbf{x}, t) \right)^{2} d^{3}\mathbf{x}$$
(97)

Integrating equation (97) with respect to time gives us

$$E(t) = E_0 - \nu \sum_{i=1}^{3} \sum_{j=1}^{3} \int_0^t \int_{\mathbb{R}^3} \left(\frac{\partial u_i}{\partial x_j}(\mathbf{x}, t') \right)^2 d^3 \mathbf{x} dt' \le E_0$$
 (98)

Since E(t) is bounded below by zero, the summation of the integrals in equation (99) must be finite, and since each these of these integrals is positive, they must all

be finite. Therefore, we may write

$$\int_{0}^{t} \int_{\mathbb{R}^{3}} \left(\frac{\partial u_{i}}{\partial x_{j}}(\mathbf{x}, t') \right)^{2} d^{3}\mathbf{x} dt' = W_{ij}(t)$$
(99)

where each of the $W_{ij}(t)$ functions are finite for all t > 0 and as $t \to \infty$.

Let us now establish a connection between the $W_{ij}(t)$ functions and the time integral of the scalar pressure gradient. We first note that since the integrands in equations (98) and (99) are everywhere greater than or equal to zero, we may write

$$\int_0^t \int_{S^3(t')} \left(\frac{\partial u_i}{\partial x_j}(\mathbf{x}, t') \right)^2 d^3 \mathbf{x} dt' \leq \int_0^t \int_{\mathbb{R}^3} \left(\frac{\partial u_i}{\partial x_j}(\mathbf{x}, t') \right)^2 d^3 \mathbf{x} dt' = W_{ij}(t) \quad (100)$$

where $S^3(t)$ can be any subset of \mathbb{R}^3 which may change with time. Let us now show that

$$\int_{0}^{t} \int_{\mathbb{R}^{3}} \left| \frac{\partial u_{i}}{\partial x_{j}}(\mathbf{x}, t') \frac{\partial u_{j}}{\partial x_{i}}(\mathbf{x}, t') \right| d^{3}\mathbf{x} dt' \leq W_{ij}(t) + W_{ji}(t) \quad i, j = 1, 2, 3$$
 (101)

for all t>0. We first define $S^3_{ij}(t)$ as the subset of S^3 (at time t) where $|\partial u_i/\partial x_j|$ is greater than or equal to $|\partial u_j/\partial x_i|$. We may then write

$$\int_{0}^{t} \int_{\mathbb{R}^{3}} \left| \frac{\partial u_{i}}{\partial x_{j}}(\mathbf{x}, t') \right| \left| \frac{\partial u_{j}}{\partial x_{i}}(\mathbf{x}, t') \right| d^{3}\mathbf{x} dt' \leq \int_{0}^{t} \int_{S_{ij}^{3}(t')} \left(\frac{\partial u_{i}}{\partial x_{j}}(\mathbf{x}, t') \right)^{2} d^{3}\mathbf{x} dt' + \int_{0}^{t} \int_{\mathbb{R}^{3} - S_{i,t}^{3}(t')} \left(\frac{\partial u_{j}}{\partial x_{i}}(\mathbf{x}, t') \right)^{2} d^{3}\mathbf{x} dt' \tag{102}$$

Since both integrands on the right-hand side of inequality (101) are positive and the subsets $S_{ij}^3(t)$ and $\mathbb{R}^3 - S_{ij}^3(t)$ are both contained within \mathbb{R}^3 for any time t, we have

$$\int_0^t \int_{S_{ij}^3(t')} \left(\frac{\partial u_i}{\partial x_j}(\mathbf{x}, t') \right)^2 d^3 \mathbf{x} dt' \leq \int_0^t \int_{\mathbb{R}^3} \left(\frac{\partial u_i}{\partial x_j}(\mathbf{x}, t') \right)^2 d^3 \mathbf{x} dt'$$
 (103)

and

$$\int_{0}^{t} \int_{\mathbb{R}^{3} - S_{i,i}^{3}(t')} \left(\frac{\partial u_{j}}{\partial x_{i}}(\mathbf{x}, t') \right)^{2} d^{3}\mathbf{x} dt' \leq \int_{0}^{t} \int_{\mathbb{R}^{3}} \left(\frac{\partial u_{j}}{\partial x_{i}}(\mathbf{x}, t') \right)^{2} d^{3}\mathbf{x} dt'$$
(104)

Inserting these into inequality (102) then gives us

$$\int_{0}^{t} \int_{\mathbb{R}^{3}} \left| \frac{\partial u_{i}}{\partial x_{j}}(\mathbf{x}, t') \frac{\partial u_{j}}{\partial x_{i}}(\mathbf{x}, t') \right| d^{3}\mathbf{x} dt' \leq \int_{0}^{t} \int_{\mathbb{R}^{3}} \left(\frac{\partial u_{i}}{\partial x_{j}}(\mathbf{x}, t') \right)^{2} d^{3}\mathbf{x} dt' + \int_{0}^{t} \int_{\mathbb{R}^{3}} \left(\frac{\partial u_{j}}{\partial x_{i}}(\mathbf{x}, t') \right)^{2} d^{3}\mathbf{x} dt'$$

$$(105)$$

From the definition of the $W_{ij}(t)$ functions in equation (99), inequality (105) can be written as

$$\int_{0}^{t} \int_{\mathbb{R}^{3}} \left| \frac{\partial u_{i}}{\partial x_{j}}(\mathbf{x}, t') \frac{\partial u_{j}}{\partial x_{i}}(\mathbf{x}, t') \right| d^{3}\mathbf{x} dt' \leq W_{ij}(t) + W_{ji}(t)$$
(106)

thereby proving inequality (101). Applying the triangle inequality to equation (13), we have

$$|Q(\mathbf{x},t)| \leq \sum_{i=1}^{3} \sum_{j=1}^{3} \left| \frac{\partial u_i}{\partial x_j}(\mathbf{x},t) \frac{\partial u_j}{\partial x_i}(\mathbf{x},t) \right|$$
(107)

Integrating this inequality over \mathbb{R}^3 and t > 0, and using inequality (101) then gives us

$$\int_{0}^{t} \int_{\mathbb{R}^{3}} |Q(\mathbf{x}, t')| d^{3}\mathbf{x} dt' \leq \sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int_{\mathbb{R}^{3}} \left| \frac{\partial u_{i}}{\partial x_{j}}(\mathbf{x}, t') \frac{\partial u_{j}}{\partial x_{i}}(\mathbf{x}, t') \right| d^{3}\mathbf{x} dt' \qquad (108)$$

$$\leq \sum_{i=1}^{3} \sum_{j=1}^{3} [W_{ij}(t) + W_{ji}(t)] = 2 \sum_{i=1}^{3} \sum_{j=1}^{3} W_{ij}(t)$$

Therefore, since each of the $W_{ij}(t)$ on the right-hand side if inequality (108) is finite, the integral of $|Q(\mathbf{x},t)|$ over any time interval and any subset of \mathbb{R}^3 must also be finite. At this point, we show that this result implies that the time integral of $|\nabla p|$ must be finite for all $\mathbf{x} \in \mathbb{R}^3$ and t > 0. Applying the triangle inequality to equation (16), we have

$$|\nabla p(\mathbf{x},t)| \leq \frac{1}{4\pi} \int_{\mathbb{R}^3} |Q(\mathbf{x}',t)| \frac{|\mathbf{x} - \mathbf{x}'|}{|\mathbf{x} - \mathbf{x}'|^3} d^3 \mathbf{x}' = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{|Q(\mathbf{x}',t)|}{|\mathbf{x} - \mathbf{x}'|^2} d^3 \mathbf{x}'$$
(109)

Integrating both sides of this inequality with respect time gives us

$$\int_{0}^{t} |\nabla p(\mathbf{x}, t')| dt' \leq \frac{1}{4\pi} \int_{0}^{t} \int_{\mathbb{R}^{3}} \frac{|Q(\mathbf{x}', t')|}{|\mathbf{x} - \mathbf{x}'|^{2}} d^{3}\mathbf{x}' dt' = \frac{1}{4\pi} \int_{\mathbb{R}^{3}} \int_{0}^{t} \frac{|Q(\mathbf{x}', t')|}{|\mathbf{x} - \mathbf{x}'|^{2}} dt' d^{3}\mathbf{x}'$$
(110)

where we have reversed the order of integration over space and time. This is valid since the solution $\mathbf{u}(\mathbf{x},t)$ and its spatial derivatives are smooth prior to any blowup. From inequality 110, we then have

$$\int_{0}^{t} \left| \nabla p(\mathbf{x}, t') \right| dt' \leq \frac{1}{4\pi} \int_{\mathbb{R}^{3}} \frac{1}{\left| \mathbf{x} - \mathbf{x}' \right|^{2}} \int_{0}^{t} \left| Q(\mathbf{x}', t') \right| dt' d^{3} \mathbf{x}' = \frac{1}{4\pi} \int_{\mathbb{R}^{3}} \frac{q(\mathbf{x}', t)}{\left| \mathbf{x} - \mathbf{x}' \right|^{2}} d^{3} \mathbf{x}'$$

$$\tag{111}$$

where we have defined

$$q(\mathbf{x},t) = \int_0^t |Q(\mathbf{x},t')| dt'$$
(112)

To obtain an upper bound on the time integral of $|\nabla p(\mathbf{x},t)|$, we first choose any finite number R and split the integral in inequality (111) into two integrals as follows

$$\int_{\mathbb{R}^3} \frac{q(\mathbf{x}',t)}{|\mathbf{x}-\mathbf{x}'|^2} d^3 \mathbf{x}' = \int_{|\mathbf{x}-\mathbf{x}'|>R} \frac{q(\mathbf{x}',t)}{|\mathbf{x}-\mathbf{x}'|^2} d^3 \mathbf{x}' + \int_{|\mathbf{x}-\mathbf{x}'|\leq R} \frac{q(\mathbf{x}',t)}{|\mathbf{x}-\mathbf{x}'|^2} d^3 \mathbf{x}'$$
(113)

From the first integral on the right-hand side of this equation, we have

$$\int_{|\mathbf{x}-\mathbf{x}'|>R} \frac{q(\mathbf{x}',t)}{|\mathbf{x}-\mathbf{x}'|^2} d^3 \mathbf{x}' < \int_{|\mathbf{x}-\mathbf{x}'|>R} \frac{q(\mathbf{x}',t)}{R^2} d^3 \mathbf{x}' < \frac{1}{R^2} \int_{\mathbb{R}^3} q(\mathbf{x}',t) d^3 \mathbf{x}'$$
(114)

since $R < |\mathbf{x} - \mathbf{x}'|$ and the integration region described by $\{\mathbf{x}' | |\mathbf{x} - \mathbf{x}'| > R\}$ is a subset of \mathbb{R}^3 . Therefore, according to inequality (114), the first integral on the right-hand side of inequality (113) is finite. Hence, we have

$$\int_{|\mathbf{x}-\mathbf{x}'|>R} \frac{q(\mathbf{x}',t)}{|\mathbf{x}-\mathbf{x}'|^2} d^3\mathbf{x}' < \frac{1}{R^2} \int_{\mathbb{R}^3} q(\mathbf{x}',t) d^3\mathbf{x}' < \infty$$
 (115)

Now let us consider the second integral on the right-hand side of equation (113). We note that this is an improper integral since the integration region contains the $|\mathbf{x} - \mathbf{x}'| = 0$ singularity. Therefore, we must evaluate this integral by excluding from the integration region a small sphere of radius ϵ centered at the singularity (ie. the point \mathbf{x}), doing the integral which now excludes the singularity, and then taking the

limit as $\epsilon \to 0$. We start by defining a set of primed spherical coordinates (r', θ', ϕ') such that

$$\mathbf{x}' = \mathbf{x} + r'\sin\theta'\cos\phi'\mathbf{e}_1 + r'\sin\theta'\sin\phi'\mathbf{e}_2 + r'\cos\theta'\mathbf{e}_3 \tag{116}$$

The second integral on the right-hand side of equation (113) can then be written as

$$\int_{|\mathbf{x}-\mathbf{x}'| \le R} \frac{q(\mathbf{x}',t)}{|\mathbf{x}-\mathbf{x}'|^2} d^3 \mathbf{x}' = \lim_{\epsilon \to 0} \int_{\epsilon}^{R} \int_{0}^{\pi} \int_{0}^{2\pi} \frac{1}{r'^2} q(\mathbf{x}'(r',\theta'\phi'),t) r'^2 \sin \theta' d\phi' d\theta' dr'$$

$$= \int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2\pi} q(\mathbf{x}'(r',\theta'\phi'),t) \sin \theta' d\phi' d\theta' dr'$$
(117)

Since the function $q(\mathbf{x},t)$ is bounded and continuous, the integral on the right-hand side of this equation must be finite. Therefore, we have shown that both integrals on the right-hand side of equation (113) must be finite for all t > 0, and since the integral on the right-hand side of inequality (111) is merely the sum of the two (finite) integrals in equation (113), we have shown the time integral of $|\nabla p(\mathbf{x},t)|$ must be finite for all $\mathbf{x} \in \mathbb{R}^3$ and t > 0.

Existence and Smoothness of Solution over Time. At this point, we show that a solution $\mathbf{u}(\mathbf{x},t)$ consistent with the initial conditions specified in the problem description will exist and remain smooth for all t > 0. That is, no blowups occur where the solution becomes infinite at some location in finite time.

We start by assuming a blowup occurs at some point \mathbf{x}_b at some finite time. Now, the solution $\mathbf{u}(\mathbf{x},t)$ must remain smooth at all points and all times prior to the blowup. Although a blowup may be in progress, the solution \mathbf{u} still exists and must therefore be smooth in the sense of inequality (79). Since \mathbf{u} is still smooth, a global maximum in $|\mathbf{u}|$ must form at \mathbf{x}_b at some point in time t_b before the actual blowup. If this maximum does not form at \mathbf{x}_b , then the blowup would occur first at other points \mathbf{x} such that $|\mathbf{u}(\mathbf{x},t)| > |\mathbf{u}(\mathbf{x}_b,t)|$, thereby contradicting our definition of the blowup point \mathbf{x}_b . Note that \mathbf{u} is still finite at t_b , and therefore it is not a blowup time. That will happen only if and when $\mathbf{u}(\mathbf{x}_b,t)$ grows to infinite values.

Let us now determine if $\mathbf{u}(\mathbf{x}_b, t)$ grows to infinite values for $t \geq t_b$. Inserting \mathbf{x}_b and $t \geq t_b$ into equation (85), we have

$$\frac{\partial K}{\partial t}(\mathbf{x}_b, t) = \nu \nabla^2 K(\mathbf{x}_b, t) - \nu \sum_{i=1}^{3} \nabla u_i(\mathbf{x}_b, t) \cdot \nabla u_i(\mathbf{x}_b, t) - \mathbf{u}(\mathbf{x}_b, t) \cdot \nabla K(\mathbf{x}_b, t) - \mathbf{u}(\mathbf{x}_b, t) \cdot \nabla p(\mathbf{x}_b, t)$$
(118)

where $K(\mathbf{x},t) = \mathbf{u}(\mathbf{x},t) \cdot \mathbf{u}(\mathbf{x},t)/2$ is the kinetic energy density of the fluid. Now, since \mathbf{x}_b is a maximum point of a smooth function defined at all points $\mathbf{x} \in \mathbb{R}^3$, we must have

$$\nabla K(\mathbf{x}_b, t) = 0$$
 and $\frac{\partial^2 K}{\partial x^2}(\mathbf{x}_b, t) \le 0 \quad (i = 1, 2, 3)$ (119),(120)

where inequality (120) arises from the second derivative test for spatial maxima. Therefore, the first term on the right-hand side of equation (118) is negative, and the third term vanishes. Therefore, this equation implies that

$$\frac{\partial K}{\partial t}(\mathbf{x}_b, t) \leq -\nu \sum_{i=1}^{3} \nabla u_i(\mathbf{x}_b, t) \cdot \nabla u_i(\mathbf{x}_b, t) - \mathbf{u}(\mathbf{x}_b, t) \cdot \nabla p(\mathbf{x}_b, t)$$
(121)

Then, since $\nabla u_i \cdot \nabla u_i \geq 0$, this inequality implies that

$$\frac{\partial K}{\partial t}(\mathbf{x}_b, t) \leq -\mathbf{u}(\mathbf{x}_b, t) \cdot \nabla p(\mathbf{x}_b, t) \tag{122}$$

Now, the maximum value that can be obtain on the right-hand side of this inequality occurs for the case when $\mathbf{u}(\mathbf{x}_b, t)$ and $\nabla p(\mathbf{x}_b, t)$ are anti-parallel vectors. In this case, we have

$$\frac{\partial K}{\partial t}(\mathbf{x}_b, t) \leq |\mathbf{u}(\mathbf{x}_b, t)| |\nabla p(\mathbf{x}_b, t)| = \sqrt{2} |\nabla p(\mathbf{x}_b, t)| \sqrt{K(\mathbf{x}_b, t)}$$
(123)

At this point, we define the single-variable function $K_b(t)$ as the maximum value of $K(\mathbf{x}_b, t)$ allowed by inequality (123). Therefore, we have

$$\frac{dK_b}{dt} = \sqrt{2} |\nabla p(\mathbf{x}_b, t)| \sqrt{K_b(t)}$$
(124)

Upon integrating this equation with respect to t, we obtain $K_b(t)$ which we defined as the greatest possible value of $K(\mathbf{x}_b, t)$. To solve this equation, we divide both sides by $\sqrt{K_b}$ and integrate with respect to t to obtain

$$K_b(t) = \frac{1}{2} \left(\int_{t_b}^t |\nabla p(\mathbf{x}_b, t')| \ dt' + \sqrt{2K_b(t_b)} \right)^2$$
 (125)

Now, since the time integral of $|\nabla p(\mathbf{x},t)|$ is finite for any $\mathbf{x} \in \mathbb{R}^3$ and $t \geq 0$ as shown in equations (111)-(117), $K_b(t)$ and therefore $K(\mathbf{x},t)$ cannot reach infinite values. Hence, we have shown existence and smoothness of the solution $[\mathbf{u}(\mathbf{x},t), p(\mathbf{x},t)]$ for all $\mathbf{x} \in \mathbb{R}^3$ and $t \geq 0$, and the existence of solution part of our main theorem is proven.

Uniqueness of Solution. Let us now show that the solution of the given problem is in fact unique. We start by defining $\mathbf{u}^{(1)}(\mathbf{x},t)$ and $\mathbf{u}^{(2)}(\mathbf{x},t)$ along with the corresponding scalar pressure functions $p^{(1)}(\mathbf{x},t)$ and $p^{(2)}(\mathbf{x},t)$ as two possible solutions of equation (4) with initial condition (5) and zero-divergence constraint (9). We therefore write

$$\frac{\partial \mathbf{u}^{(1)}}{\partial t} = \nu \nabla^2 \mathbf{u}^{(1)} - (\mathbf{u}^{(1)} \cdot \nabla) \mathbf{u}^{(1)} - \nabla p^{(1)}$$
(126)

and

$$\frac{\partial \mathbf{u}^{(2)}}{\partial t} = \nu \nabla^2 \mathbf{u}^{(2)} - (\mathbf{u}^{(2)} \cdot \nabla) \mathbf{u}^{(2)} - \nabla p^{(2)}$$
(127)

Subtracting equation (126) from (127), we have

$$\frac{\partial \mathbf{D}}{\partial t} = \nu \nabla^2 \mathbf{D} - (\mathbf{u}^{(2)} \cdot \nabla) \mathbf{D} - (\mathbf{D} \cdot \nabla) \mathbf{u}^{(1)} + \nabla p^{(1)} - \nabla p^{(2)}$$
(128)

where we have defined

$$\mathbf{D}(\mathbf{x},t) = \mathbf{u}^{(2)}(\mathbf{x},t) - \mathbf{u}^{(1)}(\mathbf{x},t)$$
(129)

as the difference between the two solutions. Taking the scalar product of both sides of equation (128) with \mathbf{D} , we have

$$\mathbf{D} \cdot \frac{\partial \mathbf{D}}{\partial t} = \nu \mathbf{D} \cdot \nabla^{2} \mathbf{D} - \mathbf{D} \cdot \left[(\mathbf{u}^{(2)} \cdot \nabla) \mathbf{D} \right] - \mathbf{D} \cdot \left[(\mathbf{D} \cdot \nabla) \mathbf{u}^{(1)} \right] + \mathbf{D} \cdot \nabla p^{(1)} - \mathbf{D} \cdot \nabla p^{(2)}$$

$$= \nu \sum_{i=1}^{3} D_{i} \nabla^{2} D_{i} - \sum_{i=1}^{3} \sum_{k=1}^{3} D_{i} u_{k}^{(2)} \frac{\partial D_{i}}{\partial x_{k}} - \sum_{i=1}^{3} \sum_{k=1}^{3} D_{i} D_{k} \frac{\partial u_{i}^{(1)}}{\partial x_{k}} - \mathbf{D} \cdot (\nabla p^{(2)} - \nabla p^{(1)})$$

$$= \nu \sum_{i=1}^{3} \nabla \cdot (D_{i} \nabla D_{i}) - \nu \sum_{i=1}^{3} (\nabla D_{i}) \cdot (\nabla D_{i}) - \mathbf{u}^{(2)} \cdot \nabla \left(\frac{1}{2} \mathbf{D} \cdot \mathbf{D}\right)$$

$$- \mathbf{D} \cdot \left[(\mathbf{D} \cdot \nabla) \mathbf{u}^{(1)} \right] - \mathbf{D} \cdot (\nabla p^{(2)} - \nabla p^{(1)})$$

$$= \nu \sum_{i=1}^{3} \nabla \cdot (D_{i} \nabla D_{i}) - \nu \sum_{i=1}^{3} (\nabla D_{i}) \cdot (\nabla D_{i}) - \nabla \cdot \left(\frac{1}{2} (\mathbf{D} \cdot \mathbf{D}) \mathbf{u}^{(2)}\right) + \frac{1}{2} (\mathbf{D} \cdot \mathbf{D}) \nabla \cdot \mathbf{u}^{(2)}$$

$$- \mathbf{D} \cdot \left[(\mathbf{D} \cdot \nabla) \mathbf{u}^{(1)} \right] - \nabla \cdot \left[(p^{(2)} - p^{(1)}) \mathbf{D} \right] + (p^{(2)} - p^{(1)}) \nabla \cdot \mathbf{D}$$

Since $\nabla \cdot \mathbf{u}^{(2)} = 0$ and $\nabla \cdot \mathbf{D} = 0$, the fourth and seventh terms on the right-hand side of this equation vanish, and we write

$$\frac{\partial W_D}{\partial t} = \nu \sum_{i=1}^{3} \nabla \cdot (D_i \nabla D_i) - \nu \sum_{i=1}^{3} (\nabla D_i) \cdot (\nabla D_i)
- \nabla \cdot (W_D \mathbf{u}^{(2)}) - \mathbf{D} \cdot \left[(\mathbf{D} \cdot \nabla) \mathbf{u}^{(1)} \right] - \nabla \cdot (p_D \mathbf{D})$$
(131)

where we have defined the normalized energy density W_D associated with \mathbf{D} , and pressure difference p_D as

$$W_D = \frac{1}{2}(\mathbf{D} \cdot \mathbf{D})$$
 and $p_D = p^{(2)} - p^{(1)}$ (132),(133)

Integrating equation (131) over all \mathbb{R}^3 space, we obtain

$$\frac{dE_D}{dt} = \nu \sum_{i=1}^{3} \int_{\mathbb{R}^3} \nabla \cdot (D_i \nabla D_i) d^3 \mathbf{x} - \nu \int_{\mathbb{R}^3} \sum_{i=1}^{3} (\nabla D_i) \cdot (\nabla D_i) d^3 \mathbf{x}
- \int_{\mathbb{R}^3} \nabla \cdot (W_D \mathbf{u}^{(2)}) d^3 \mathbf{x} - \int_{\mathbb{R}^3} \mathbf{D} \cdot \left[(\mathbf{D} \cdot \nabla) \mathbf{u}^{(1)} \right] d^3 \mathbf{x} - \int_{\mathbb{R}^3} \nabla \cdot (p_D \mathbf{D}) d^3 \mathbf{x}$$
(134)

where we have defined the normalized total energy density associated with \mathbf{D} as

$$E_D(t) = \int_{\mathbb{R}^3} W_D(\mathbf{x}, t) d^3 \mathbf{x} = \frac{1}{2} \int_{\mathfrak{P}^3} \mathbf{D}(\mathbf{x}, t) \cdot \mathbf{D}(\mathbf{x}, t) d^3 \mathbf{x}$$
 (135)

The first, third, and fifth terms on the right-hand side of equation (134) vanish via the divergence theorem and the fact that the integrands in each of these terms approach zero as $1/(|\mathbf{x}| + a)^{2\kappa}$ as $|\mathbf{x}| \to \infty$. Therefore, equation (134) becomes

$$\frac{dE_D}{dt} = -\int_{\mathbb{R}^3} \left(\sum_{i=1}^3 \nu(\nabla D_i) \cdot (\nabla D_i) + \mathbf{D} \cdot \left[(\mathbf{D} \cdot \nabla) \mathbf{u}^{(1)} \right] \right) d^3 \mathbf{x} = Y(t)$$
 (136)

where we have defined

$$Y(t) = -\int_{\mathbb{R}^3} \left(\sum_{i=1}^3 \nu(\nabla D_i) \cdot (\nabla D_i) + \mathbf{D} \cdot \left[(\mathbf{D} \cdot \nabla) \mathbf{u}^{(1)} \right] \right) d^3 \mathbf{x}$$
 (137)

Integrating both sides of equation (136) with respect to time, we have

$$E_D(t) = \int_0^t Y(t') \, dt' \tag{138}$$

where we have used the fact that $E_D(0) = 0$ since $\mathbf{u}^{(1)}$ and $\mathbf{u}^{(2)}$ have the same initial conditions (ie. $\mathbf{u}^{(1)}(\mathbf{x},0) = \mathbf{u}^{(2)}(\mathbf{x},0) = u^0(\mathbf{x})$ at t=0 and all $\mathbf{x} \in \mathbb{R}^3$. To determine $E_D(t)$ for t>0, let us construct a grid G of discrete time values t'_n on the interval $0 \le t' \le t$ such that

$$0 = t_0' < t_1' < t_2' < \dots < t_N' = t \tag{139}$$

where N is the number of subintervals defined by G on the interval. We define a finite time difference estimate of the solution of equation (136), or equivalently (138), at the grid times t'_n according to

$$E_D^{(G)}(t_0') = E_D^{(G)}(0) = E_D(0) = 0 (140)$$

for n = 0, and

$$E_D^{(G)}(t'_{n+1}) = Y^{(G)}(t'_n)(t'_{n+1} - t'_n) + E_D^{(G)}(t'_n)$$
(141)

for $0 \le n \le N$. The values $Y^{(G)}(t'_n)$ in this equation are obtained from equation (137), where we set $t = t'_n$ and $\mathbf{D} = \mathbf{D}^{(G)}(\mathbf{x}, t'_n)$, where $\mathbf{D}^{(G)}(\mathbf{x}, t'_n)$ is the finite difference estimate of \mathbf{D} at time t'_n . Since $\mathbf{D}(\mathbf{x}, 0) = 0$ for all $\mathbf{x} \in \mathbb{R}^3$, equation (137) implies that $Y^{(G)}(0) = 0$. Inserting this result into equation (147) with n = 0, we have $E_D^{(G)}(t'_1) = 0$. From equation (141), we then have

$$E_D^{(G)}(t_1') = \int_{\mathbb{R}^3} W_D^{(G)}(\mathbf{x}, t_1') d^3 \mathbf{x} = \frac{1}{2} \int_{\mathbb{R}^3} \mathbf{D}^{(G)}(\mathbf{x}, t_1') \cdot \mathbf{D}^{(G)}(\mathbf{x}, t_1') d^3 \mathbf{x} = 0 \quad (142)$$

where we have defined $W_D^{(G)}(\mathbf{x},t_n')$ as the W_D function corresponding to the finite difference approximation at t_n' . Since the integrand in this equation is continuous and greater than or equal to zero at all points $\mathbf{x} \in \mathbb{R}^3$, $E_D^{(G)}(t_1')$ can equal zero only if $\mathbf{D}^{(G)}(\mathbf{x},t_1')=0$ at all points \mathbf{x} . Inserting this result into equation (137), we then have $Y^{(G)}(t_1')=0$. This implies (via equation (141)) that $E_D^{(G)}(t_2')=0$, which in turn implies that $\mathbf{D}^{(G)}(\mathbf{x},t_2')=0$ at all points $\mathbf{x} \in \mathbb{R}^3$, and therefore $Y^{(G)}(t_3')=0$. If we continue in this manner, we may show that

$$Y^{(G)}(t_1') = Y^{(G)}(t_2') = \dots = Y(t_N') = 0$$
(143)

and

$$E_D^{(G)}(t_1') = E_D^{(G)}(t_2') = \dots = E_D(t_N') = 0$$
 (144)

regardless of the grid time spacing or number of grid points. Therefore, in the limit as maximum difference between successive grid times (ie. max over n of $t_{n+1} - t_n$) approaches zero, these equations become

$$Y(t) = 0$$
 and $E_D(t) = \int_0^t Y(t') dt' = 0$ (145),(146)

for all $t \ge 0$. Inserting equation (145) and (146) into (135), we have

$$E_D(t) = \frac{1}{2} \int_{\mathbb{R}^3} \mathbf{D}(\mathbf{x}, t) \cdot \mathbf{D}(\mathbf{x}, t) \ d^3 \mathbf{x} = 0$$
 (147)

Since the integrand $\mathbf{D}(\mathbf{x},t) \cdot \mathbf{D}(\mathbf{x},t)$ in this equation is greater than or equal to zero and is continuous in \mathbf{x} over all \mathbb{R}^3 we must have $\mathbf{D}(\mathbf{x},t) \cdot \mathbf{D}(\mathbf{x},t) = 0$ for all \mathbf{x} and t. Inserting this result into equation (129), we then have $\mathbf{u}^{(1)}(\mathbf{x},t) = \mathbf{u}^{(2)}(\mathbf{x},t)$ for all

 \mathbf{x} and t, and therefore the solution is unique. Since this difference $\mathbf{D}(\mathbf{x},t)$ between the solutions $\mathbf{u}^{(1)}(\mathbf{x},t)$ and $\mathbf{u}^{(2)}(\mathbf{x},t)$ is identically zero, if follows that the solution $\mathbf{u}(\mathbf{x},t)$ is unique. Hence, the uniqueness part of our main theorem is proven, which concludes our proof of this theorem.

CONCLUSION

In this paper, we have shown existence of a solution of the zero driving-force Navier-Stokes equation in free space with given initial fluid velocity and spatial derivatives profiles which approach zero as $a^{\kappa}/(|\mathbf{x}|+a)^{\kappa}$ as $|\mathbf{x}|\to\infty$, assuming a scalar pressure and incompressibility of the fluid. Existence of a smooth, finite energy solution was proven by first establishing that such a solution would retain this spatial characteristic when propagated over any finite time interval. Next, it was proven that the solution $\mathbf{u}(\mathbf{x},t)$ must be bounded by showing that the time integral of the scalar pressure gradient ∇p remains bounded and continuous despite possible irregularities in the solution components u_i and their spatial derivatives. Finally, we showed that the solution is unique.

References

- Charles L. Fefferman, Existence & Smoothness of the Navier-Stokes Equation, May 1, 2000, Princeton University Department of Mathematics, Princeton, N.J. 08544-1000.
- C. Foias, O. Manley, R. Rosa, R. Teman Navier-Stokes Equations and Turbulence, Cambridge University Press, 2001. Amer. Math. Soc., Providence, RI, 1993.
- 3. K. Hartnett Mathematicians Second-Guess Centuries-Old Fluid Equations, https://www.wired.com/story/mathematicians-second-guess-centuries-old-fluid-equations/, July 1, 2018.
- T. Buckmaster, V. Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation, https://arxiv.org/pdf/1709.10033.pdf, October 12, 2018.
- T. Tao, Finite Time Blowup for an Averaged Three-Dimensional Navier-Stokes Equation, https://arxiv.org/abs/1402.0290, April 1, 2015.
- A. Tsionskiy, M. Tsionskiy Existence, Uniqueness, and Smoothness of Solution for 3D Navier-Stokes Equations with Any Smooth Initial Velocity, arXiv:1201.1609v8 [math.AP] 1 September 2013.
- 7. Mihir Kumar Jha, The complete Solution for existence and smoothness of Navier-Stokes equation, Global Academy of Technology, Karnataka, India 560098
- 8. Svetlin G. Georgiev and Gal Davidi, Existence and Smoothness of Navier-Stokes Equations, emails: svetlingeorgiev1@gmail.com, gal.davidi11@gmail.com
- 9. Asset A. Durmagambetov, Leyla S. Fazilova, Navier-Stokes Equations Millennium Prize Problems, System Research Factor Company, Astana, Kazakhstan.
- A. Prstaro, Geometry of PDE's. IV: Navier-Stokes equation and integral bordism groups, J. Math. Anal. Appl.338(2)(2008), 1140-1151. DOI: 10.1016/j.jmaa.2007.06.009. MR2386488(2009j:58028); Zbl 1135.35064]
- 11. David Shirokoff, I. A Pressure Poisson Method for the Incompressible Navier-Stokes Equations II. Long Time Behavior of the Klein-Gordon Equations, Archives, Massachusetts Institute of Technology Libraries, September 22, 2011.
- P. M. Gresho and R. L. Sani, "On pressure boundary conditions for the incompressible Navier-Stokes equations". Int. J. Numer. Methods Fluids, 7:1111-1145, 1987.
- 13. Ronald B. Guenther, John W. Lee, Partial Differential Equations of Mathematical Physics and Integral Equations, Dover Publications, Inc. 1988, pp. 306-313.
- Clive R. Chester, Techniques in Partial Differential Equations, McGraw-Hill Book Company, 1971, pp. 92-95.
- 15. J.D. Jackson, *Classical Electrodynamics*, Third Edition, John Wiley and Sons, Inc., 1999, pp. 34-40.

Alamosa, CO

 $E\text{-}mail\ address: \verb|mathguy@navierstokessmoothsolutions.com||$