Proposed Counter-Example

In this proposed counter-example to statement that equations (108) and (109)
of the paper imply equation (118), we choose the quantity ¢(x,t) as follows:
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q(x,t) = qo 55&) if |x| <d(t), and ¢(x,t) =0 if |x| > d(¢)
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tp is the blowup time, and g9 and dy are the initial values of ¢ and ¢ respectively.

Integrating this function over R3, we have
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which is consistent with inequality (109) in the paper.
Now let us see if we can establish existence of the time integral of |Vp| at x = 0.
We first obtain an expression for the function Q(x,t) valid for |x| < 6(¢). From
equation (108) of the paper, we have
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where we have assumed Q(x,t) > 0 for this example. As we will see, however,
using the opposite sign leads to the same basic result. Inserting this function into

equation (12) from the paper gives us
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This is merely Poisson’s equation with a radially symmetric non-homogeneous term.
Therefore we must have Vp = 0 at x = 0 for all ¢ < ¢;,. Note that we would
have gotten the same result Vp = 0 if we had chosen Q(x,t) < 0 at x = 0.
The mathematical principles are the same as those used to show that a radially

symmetric charge distribution has zero electric field at the center, and that there
is zero gravitational field at the center of a star or planet. Therefore, we must have
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for all ¢ < t,. Since A(0,t) does not blow up as ¢ — t;, this proposed counter-
example to the claim that (108) and (109) implies (118) is false.

Vp(x,t) = —Q(x,t) = —3qo if |x| < d(t); and 0 otherwise



